Skip to main content
Log in

Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We examined whether inspiratory muscle training (IMT) improved cycling time-trial performance and changed the relationship between limit work (W lim) and limit time (T lim), which is described by the parameters critical power (CP) and anaerobic work capacity (AWC). Eighteen male cyclists were assigned to either a pressure-threshold IMT or sham hypoxic-training placebo (PLC) group. Prior to and following a 6 week intervention subjects completed a 25-km cycling time-trial and three constant-power tests to establish the W limT lim relationship. Constant-power tests were prescribed to elicit exercise intolerance within 3–10 (Ex1), 10–20 (Ex2), and 20–30 (Ex3) min. Maximal inspiratory mouth pressure increased by (mean ± SD) 17.1 ± 12.2% following IMT (P < 0.01) and was accompanied by a 2.66 ± 2.51% improvement in 25-km time-trial performance (P < 0.05); there were no changes following PLC. Constant-power cycling endurance was unchanged following PLC, as was CP (pre vs. post: 249 ± 32 vs. 250 ± 32 W) and AWC (30.7 ± 12.7 vs. 30.1 ± 12.5 kJ). Following IMT Ex1 and Ex3 cycling endurance improved by 18.3 ± 15.1 and 15.3 ± 19.1% (P < 0.05), respectively, CP was unchanged (264 ± 62 vs. 263 ± 61 W), but AWC increased from 24.8 ± 5.6 to 29.0 ± 8.4 kJ (P < 0.05). In conclusion, these data provide novel evidence that improvements in constant-power and cycling time-trial performance following IMT in cyclists may be explained, in part, by an increase in AWC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Åstrand P-O, Rodahl K, Dahl HA, Stromme SB (2003) Textbook of work physiology: physiological bases of exercise, 4th edn. Human Kinetics, Leeds, pp 313–368

    Google Scholar 

  • Bishop D, Jenkins DG (1996) The influence of resistance training on the critical power function and time to fatigue at critical power. Aust J Sci Med Sport 28:101–105

    PubMed  CAS  Google Scholar 

  • Boutellier U, Buchel R, Kundert A, Spengler C (1992) The respiratory system as an exercise limiting factor in normal trained subjects. Eur J Appl Physiol 65:347–353

    Article  CAS  Google Scholar 

  • Brandon LJ (1995) Physiological factors associated with middle distance running performance. Sports Med 19:268–277

    PubMed  CAS  Google Scholar 

  • Bulbulian R, Wilcox AR, Darabos BL (1986) Anaerobic contribution to distance running performance of trained cross-country athletes. Med Sci Sports Exerc 18:107–113

    PubMed  CAS  Google Scholar 

  • Cotes JE (1993) Lung function: assessment and application in medicine, 5th edn. Blackwell Scientific Publications, London, pp 496–497

    Google Scholar 

  • Dempsey JA, Romer L, Rodman J, Miller J, Smith C (2006) Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151:242–250

    Article  PubMed  Google Scholar 

  • Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA (2007) Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 156:137–146

    Article  PubMed  Google Scholar 

  • Edwards AM, Cooke CB (2004) Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended. Eur J Appl Physiol 93:139–144

    PubMed  CAS  Google Scholar 

  • Fairbarn MS, Coutts KC, Pardy RL, McKenzie DC (1991) Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal exercise performance. Int J Sports Med 12:66–70

    PubMed  CAS  Google Scholar 

  • Fernández-García B, Pérez-Landaluce J, Rodríguez-Alonso M, Terrados N (2000) Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc 32:1002–1006

    Article  PubMed  Google Scholar 

  • Fukuba Y, Whipp BJ (1999) A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol 87:853–861

    PubMed  CAS  Google Scholar 

  • Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ (2003) The curvature constant parameter of the power-duration curve for varied-power exercise. Med Sci Sports Exerc 35:1413–1418

    Article  PubMed  Google Scholar 

  • Gething AD, Williams M, Davies B (2004) Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br J Sports Med 38:730–736

    Article  PubMed  CAS  Google Scholar 

  • Griffiths LA, McConnell AK (2007) The influence of inspiratory and expiratory muscle training upon rowing performance. Eur J Appl Physiol 99:457–466

    Article  PubMed  Google Scholar 

  • Guenette JA, Martens AM, Lee AL, Tyler GD, Richards JC, Foster GE, Warburton DER, Sheel AW (2006) Variable effects of respiratory muscle training on cycle exercise performance in men and women. Appl Physiol Nutr Metab 31:159–166

    Article  PubMed  Google Scholar 

  • Hanel B, Secher NH (1991) Maximal oxygen uptake and work capacity after inspiratory muscle training: a controlled study. J Sports Sci 9:43–52

    PubMed  CAS  Google Scholar 

  • Hill DW (1993) The critical power concept. Sports Med 16:237–254

    PubMed  CAS  Google Scholar 

  • Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieve \( \dot V{\text{O}}_{2\max } . \) Med Sci Sports Exerc 34:709–714

  • Hopkins WG, Hawley JA, Burke LM (1999) Design and analysis of research on sport performance enhancement. Sports Med 31:472–485

    CAS  Google Scholar 

  • Huang CH, Martin AD, Davenport PW (2003) Effect of inspiratory muscle strength training on inspiratory motor drive and RREP early peak components. J Appl Physiol 94:462–468

    PubMed  Google Scholar 

  • Inbar O, Weiner P, Azgad Y, Rotstein A, Weinstein Y (2000) Specific inspiratory muscle training in well-trained endurance athletes. Med Sci Sports Exerc 32:1233–1237

    Article  PubMed  CAS  Google Scholar 

  • Jenkins DG, Quigley BM (1993) The influence of high-intensity exercise training on the W limT lim relationship. Med Sci Sports Exerc 25:275–282

    PubMed  CAS  Google Scholar 

  • Johnson MA, Sharpe GR, McConnell AK (2006) Maximal voluntary hyperpnoea increases blood lactate concentration during exercise. Eur J Appl Physiol 96:600–608

    Article  PubMed  Google Scholar 

  • Kohl J, Koller EA, Brandenberger M, Cardenas M, Boutellier U (1997) Effect of exercise-induced hyperventilation on airway resistance and cycling endurance. Eur J Appl Physiol 75:305–311

    Article  CAS  Google Scholar 

  • Kraemer WJ, Fleck SJ, Evans WJ (1996) Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev 24:363–397

    Article  PubMed  CAS  Google Scholar 

  • Leddy JJ, Limprasertkul A, Patel S, Modlich F, Buyea C, Pendergast DR, Lundgren CE (2007) Isocapnic hyperpnea training improves performance in competitive male runners. Eur J Appl Physiol 99:556–676

    Article  Google Scholar 

  • Leith DE, Bradley M (1976) Ventilatory muscle strength and endurance training. J Appl Physiol 41:508–516

    PubMed  CAS  Google Scholar 

  • Markov G, Spengler CM, Knopfli-Lenzin C, Stuessi C, Boutellier U (2001) Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur J Appl Physiol 85:233–239

    Article  PubMed  CAS  Google Scholar 

  • McConnell AK, Lomax M (2006) The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue. J Physiol 577:445–457

    Article  PubMed  CAS  Google Scholar 

  • McConnell AK, Romer LM (2004) Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med 25:284–293

    Article  PubMed  CAS  Google Scholar 

  • McConnell AK, Sharpe GR (2005) The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration. Eur J Appl Physiol 94:277–284

    Article  PubMed  Google Scholar 

  • McMahon ME, Boutellier U, Smith RM, Spengler CM (2002) Hyperpnoea training attenuates peripheral chemosensitivity and improves cycling endurance. J Exp Biol 205:3937–3943

    PubMed  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338

    Article  Google Scholar 

  • Morgan DW, Kohrt WM, Bates BJ, Skinner JS (1987) Effects of respiratory muscle endurance training on ventilatory and endurance performance of moderately trained cyclists. Int J Sports Med 8:88–93

    PubMed  CAS  Google Scholar 

  • Morton RH (2006) The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96:339–354

    Article  PubMed  Google Scholar 

  • Noakes TD (2004) Linear relationship between the perception of effort and the duration of constant load exercise that remains. J Appl Physiol 96:1571–1572

    Article  PubMed  Google Scholar 

  • Palmer GS, Dennis SC, Noakes TD, Hawley JA (1996) Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 17:293–298

    Article  PubMed  CAS  Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279

    Article  PubMed  CAS  Google Scholar 

  • Pringle JS, Jones AM (2002) Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol 88:214–226

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Sarmiento A, Orozco-Levi M, Güell R, Barreiro E, Hernandez N, Mota S, Sangenis M, Broquetas JM, Casan P, Gea J (2002) Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes. Am J Respir Crit Care Med 166:1491–1497

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK (2003) Specificity and reversibility of inspiratory muscle training. Med Sci Sports Exerc 35:237–244

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002a) Effects of inspiratory muscle training on time-trial performance in trained cyclists. J Sports Sci 20:547–562

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002b) Effects of inspiratory muscle training upon recovery time during high-intensity, repetitive sprint activity. Int J Sports Med 23:353–360

    Article  PubMed  CAS  Google Scholar 

  • Sheel AW (2002) Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med 32:567–581

    Article  PubMed  Google Scholar 

  • Smith JC, Dangelmaier BS, Hill DW (1999) Critical power is related to cycling time trial performance. Int J Sports Med 20:374–378

    Article  PubMed  CAS  Google Scholar 

  • Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA (2001) Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol 127:185–199

    Article  PubMed  CAS  Google Scholar 

  • Spengler CM, Roos M, Laube SM, Boutellier U (1999) Decreased exercise blood lactate concentrations after respiratory endurance training in humans. Eur J Appl Physiol 79:299–305

    Article  CAS  Google Scholar 

  • Tucker R, Bester A, Lambert EV, Noakes TD, Vaughan CL, St Clair Gibson A (2006) Non-random fluctuations in power output during self-paced exercise. Br J Sports Med 40:912–917

    Article  PubMed  CAS  Google Scholar 

  • Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol Regul Integr Comp Physiol 292:1246–1253

    Google Scholar 

  • Volianitis S, McConnell AK, Koutedakis Y, McNaughton L, Backx K, Jones DA (2001) Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 33:803–809

    PubMed  CAS  Google Scholar 

  • Wells GD, Plyley M, Thomas S, Goodman L, Duffin J (2005) Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur J Appl Physiol 94:527–540

    Article  PubMed  Google Scholar 

  • Williams JS, Wongsathikun J, Boon SM, Acevedo EO (2002) Inspiratory muscle training fails to improve endurance capacity in athletes. Med Sci Sports Exerc 34:1194–1198

    Article  PubMed  Google Scholar 

  • Wilson SH, Cooke NT, Edwards RHT, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 39:535–538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.A., Sharpe, G.R. & Brown, P.I. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol 101, 761–770 (2007). https://doi.org/10.1007/s00421-007-0551-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0551-3

Keywords

Navigation