Skip to main content

Advertisement

Log in

Time course of haemoglobin mass during 21 days live high:train low simulated altitude

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the time course of changes in haemoglobin mass (Hbmass) in well-trained cyclists in response to live high:train low (LHTL). Twelve well-trained male cyclists participated in a 3-week LHTL protocol comprising 3,000 m simulated altitude for ~14 h/day. Prior to LHTL duplicate baseline measurements were made of Hbmass, maximal oxygen consumption (VO2max) and serum erythropoietin (sEPO). Hbmass was measured weekly during LHTL and twice in the week thereafter. There was a 3.3% increase in Hbmass and no change in VO2max after LHTL. The mean Hbmass increased at a rate of ~1% per week and this was maintained in the week after cessation of LHTL. The sEPO concentration peaked after two nights of LHTL but there was only a trivial correlation (r = 0.04, P = 0.89) between the increase in sEPO and the increase in Hbmass. Athletes seeking to gain erythropoietic benefits from moderate altitude need to spend >12 h/day in hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfrey CP, Udden MM, Huntoon CL, Driscoll T (1996) Destruction of newly released red blood cells in space flight. Med Sci Sports Exerc 28:S42–S44. doi:10.1097/00005768-199610000-00032

    PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Dobson GP, Hahn AG (1999a) “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol Occup Physiol 80:479–484. doi:10.1007/s004210050621

    Article  PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Martin DT, Dobson GP, Hahn AG (1999b) Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol Occup Physiol 80:472–478. doi:10.1007/s004210050620

    Article  PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Dobson GP, Boston TT, Parisotto R, Emslie KR, Trout GJ, Hahn AG (2000) Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur J Appl Physiol 81:428–435. doi:10.1007/s004210050064

    Article  PubMed  CAS  Google Scholar 

  • Brugniaux JV, Schmitt L, Robach P, Nicolet G, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Saas P, Chorvot MC, Cornolo J, Olsen NV, Richalet JP (2006) Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol 100:203–211. doi:10.1152/japplphysiol.00808.2005

    Article  PubMed  Google Scholar 

  • Celsing F, Svedenhag J, Pihlstedt P, Ekblom B (1987) Effects of anaemia and stepwise-induced polycythaemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol Scand 129(1):47–54. doi:10.1111/j.1748-1716.1987.tb08038.x

    Article  PubMed  CAS  Google Scholar 

  • Chapman RF, Stray-Gundersen J, Levine BD (1988) Individual variation in response to altitude training. J Appl Physiol 85(4):1448–1456

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences. Lawrence Erlbaum Associates Incorporation, Hillsdale

    Google Scholar 

  • Dehnert C, Hutler M, Liu Y, Menold E, Netzer C, Schick R, Kubanek B, Lehmann M, Boning D, Steinacker JM (2002) Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. Int J Sports Med 23:561–566. doi:10.1055/s-2002-35533

    Article  PubMed  CAS  Google Scholar 

  • Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bärtsch P (2005) Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med 39(3):148–153. doi:10.1136/bjsm.2003.011387

    Article  PubMed  CAS  Google Scholar 

  • Garvican LA, Martin DT, Clark SA, Schmidt W, Gore CJ (2007) Variability of EPO response to sleeping at altitude: a cycling case study. Int J Sports Physiol Perform 2(3):329–333

    Google Scholar 

  • Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray-Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92(6):2361–2367

    PubMed  CAS  Google Scholar 

  • Gore CJ, Hopkins WG (2005) Counterpoint: positive effects of intermittent hypoxia (live high:train low) on exercise performance are not mediated primarily by augmented red cell volume. J Appl Physiol 99(5):2055–2057. doi:10.1152/japplphysiol.00820.2005

    Article  PubMed  Google Scholar 

  • Gore CJ, Hahn AG, Burge CM, Telford RD (1997) VO2max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med 18:477–482. doi:10.1055/s-2007-972667

    Article  PubMed  CAS  Google Scholar 

  • Gore CJ, Hopkins WG, Burge CM (2005) Errors of measurement for blood volume parameters: a meta-analysis. J Appl Physiol 99(5):1745–1758. doi:10.1152/japplphysiol.00505.2005

    Article  PubMed  Google Scholar 

  • Gore CJ, Rodriguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD (2006a) Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4000–5500 m). J Appl Physiol 101:1386–1393. doi:10.1152/japplphysiol.00342.2006

    Article  PubMed  CAS  Google Scholar 

  • Gore CJ, Bourdon PC, Woolford SM, Ostler LM, Eastwood A, Scroop GC (2006b) Time and sample site dependency of the optimized CO-rebreathing method. Med Sci Sports Exerc 38:1187–1193. doi:10.1249/01.mss.0000222848.35004.41

    Article  PubMed  Google Scholar 

  • Gore CJ, Clark SA, Saunders PU (2007) Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc 39(9):1600–1609. doi:10.1249/mss.0b013e3180de49d3

    Article  PubMed  Google Scholar 

  • Green HJ, Sutton JR, Coates G, Ali M, Jones S (1991) Response of red cell and plasma volume to prolonged training in humans. J Appl Physiol 70:1810–1815

    PubMed  CAS  Google Scholar 

  • Hahn AG, Gore CJ (2001) The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 31:533–557. doi:10.2165/00007256-200131070-00008

    Article  PubMed  CAS  Google Scholar 

  • Hahn AG, Gore CJ, Martin DT, Ashenden MJ, Roberts AD, Logan PA (2001) An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol A Mol Integr Physiol 128:777–789. doi:10.1016/S1095-6433(01)00283-5

    Article  PubMed  CAS  Google Scholar 

  • Hopkins WG (2002) A scale of magnitudes for effect statistics. Sportscience. http://www.sportsci.org/resource/stats/effectmag.html

  • Hopkins WG (2003) A spreadsheet for analysis of straightforward controlled trials. Sportscience. http://www.sportsci.org/jour/03/wghtrials.htm

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13

    Article  PubMed  Google Scholar 

  • Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807. doi:10.1152/japplphysiol.00969.2003

    Article  PubMed  CAS  Google Scholar 

  • Laitinen H, Alopaeus K, Heikkinen R, Hietanen H, Mikkelsson L, Tikkanen H, Rusko HK (1995) Acclimatisation to living in normobaric hypoxia and training at sea level in runners. Med Sci Sport Exerc 27(5):S109

    Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    PubMed  CAS  Google Scholar 

  • Levine BD, Stray-Gundersen J, Duhaime G, Snell PG, Friedman DB (1991) “Live high-train low”: the effect of altitude acclimatisation/normoxic training in trained runners. Med Sci Sport Exerc 23(4):S25

    Google Scholar 

  • Levine BD, Stray-Gundersen J, Gore CJ, Hopkins WG (2005) Point:counterpoint: positive effects of intermittent hypoxia (live high:train low) on exercise are/are not mediated primarily by augmented red cell volume. J Appl Physiol 99:2053–2055. doi:10.1152/japplphysiol.00877.2005 (discussion 2055–2058)

    Article  PubMed  Google Scholar 

  • Maxwell BF, Withers RT, Ilsley AH, Wakin MJ, Woods GF, Day L (1998) Dynamic calibration of mechanically air- and electromagnetically braked cycle ergometers. Eur J Appl Physiol 78:346–352. doi:10.1007/s004210050430

    Article  CAS  Google Scholar 

  • Myhre LG, Muir IH, Salazar AB, Dahms T (2003) Effect of 40 days sleeping in normobaric hypoxia on total hemoglobin mass in competitive runners. Med Sci Sports Exerc 35(5):S115. doi:10.1097/00005768-200305001-00622

    Google Scholar 

  • Neya M, Enoki T, Kumai Y, Sugoh T, Tawahaia T (2007) The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass. J Appl Physiol 103(3):828–834. doi:10.1152/japplphysiol.00265.2007

    Article  PubMed  CAS  Google Scholar 

  • Parisotto R, Wu M, Ashenden MJ, Emslie KR, Gore CJ, Howe C, Kazlauskas R, Sharpe K, Trout GJ, Xie M (2001) Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 86:128–137

    PubMed  CAS  Google Scholar 

  • Piehl-Aulin K, Svedenhag J, Wide L, Berglund B, Saltin B (1998) Short-term intermittent normobaric hypoxia—haematological, physiological and mental effects. Scand J Med Sci Sports 8(3):132–137

    PubMed  CAS  Google Scholar 

  • Prommer N, Schmidt W (2007) Loss of CO from the intravascular bed and its impact on the optimised CO-rebreathing method. Eur J Appl Physiol 100(4):383–391. doi:10.1007/s00421-007-0439-2

    Article  PubMed  Google Scholar 

  • Remes K (1979) Effect of long-term physical training on total red cell volume. Scand J Clin Lab Invest 39:311–319. doi:10.3109/00365517909106114

    Article  PubMed  CAS  Google Scholar 

  • Rice L, Ruiz W, Driscoll T, Whitley CE, Tapia R, Hachey DL, Gonzales GF, Alfrey CP (2001) Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass. Ann Intern Med 134(8):652–656

    PubMed  CAS  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Roels B, Millet G, Hellard P, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006a) Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol 96:423–433. doi:10.1007/s00421-005-0089-1

    Article  PubMed  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006b) Living high-training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol 97(6):695–705. doi:10.1007/s00421-006-0240-7

    Article  PubMed  Google Scholar 

  • Rusko K, Tikkanen H, Paavolainen L, Hamalainen I, Kalliokoski K, Puranen A (1999) Effect of living in hypoxia and training in normoxia on sea level VO2max and red cell mass. Med Sci Sport Exerc 31(5):S86

    Article  Google Scholar 

  • Rusko HK, Tikkanen HO, Peltonen JE (2004) Altitude and endurance training. J Sports Sci 22:928–944. doi:10.1080/02640410400005933 (discussion 945)

    Article  PubMed  Google Scholar 

  • Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA (2004) Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol 96:931–937. doi:10.1152/japplphysiol.00725.2003

    Article  PubMed  CAS  Google Scholar 

  • Saunders PU, Telford RD, Pyne DB, Hahn AG, Gore CJ (2009) Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure. J Sci Med Sport 12(1):67–72

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W, Prommer N (2008) Effects of various training modalities on blood volume. Scand J Med Sci Sports 18(Suppl 1):57–69

    Article  PubMed  Google Scholar 

  • Stray-Gundersen J, Chapman RF, Levine BD (2001) “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol 91:1113–1120

    PubMed  CAS  Google Scholar 

  • Wehrlin JP, Marti B (2006) Live high-train low associated with increased haemoglobin mass as preparation for the 2003 World Championships in two native world class runners. Br J Sports Med 40(2):e3. doi:10.1136/bjsm.2005.019729 (discussion e3)

    Article  PubMed  CAS  Google Scholar 

  • Wehrlin JP, Zuest P, Hallen J, Marti B (2006) Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 100:1938–1945. doi:10.1152/japplphysiol.01284.2005

    Article  PubMed  CAS  Google Scholar 

  • Weil JV, Jamieson G, Brown DW, Grover RF (1968) The red cell mass—arterial oxygen relationship in normal man. Application to patients with chronic obstructive airway disease. J Clin Invest 47:1627–1639

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding support for the Australian Institute of Sport Applied Research Centre, and BOC Gases for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally A. Clark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10040 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, S.A., Quod, M.J., Clark, M.A. et al. Time course of haemoglobin mass during 21 days live high:train low simulated altitude. Eur J Appl Physiol 106, 399–406 (2009). https://doi.org/10.1007/s00421-009-1027-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1027-4

Keywords

Navigation