Skip to main content
Log in

Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The limited available evidence suggests that endurance training does not influence the pulmonary oxygen uptake (\( \dot{V}{\text{O}}_{2} \)) kinetics of pre-pubertal children. We hypothesised that, in young trained swimmers, training status-related adaptations in the \( \dot{V}{\text{O}}_{2} \) and heart rate (HR) kinetics would be more evident during upper body (arm cranking) than during leg cycling exercise. Eight swim-trained (T; 11.4 ± 0.7 years) and eight untrained (UT; 11.5 ± 0.6 years) girls completed repeated bouts of constant work rate cycling and upper body exercise at 40% of the difference between the gas exchange threshold and peak \( \dot{V}{\text{O}}_{2} \). The phase II \( \dot{V}{\text{O}}_{2} \) time constant was significantly shorter in the trained girls during upper body exercise (T: 25 ± 3 vs. UT: 37 ± 6 s; P < 0.01), but no training status effect was evident in the cycle response (T: 25 ± 5 vs. UT: 25 ± 7 s). The \( \dot{V}{\text{O}}_{2} \) slow component amplitude was not affected by training status or exercise modality. The time constant of the HR response was significantly faster in trained girls during both cycle (T: 31 ± 11 vs. UT: 47 ± 9 s; P < 0.01) and upper body (T: 33 ± 8 vs. UT: 43 ± 4 s; P < 0.01) exercise. The time constants of the phase II \( \dot{V}{\text{O}}_{2} \) and HR response were not correlated regardless of training status or exercise modality. This study demonstrates for the first time that swim-training status influences upper body \( \dot{V}{\text{O}}_{2} \) kinetics in pre-pubertal children, but that cycle ergometry responses are insensitive to such differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bailey SJ, Wilkerson DP, DiMenna FJ, Jones AM (2009) Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol 106:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Barker AR, Williams CA, Jones AM, Armstrong N (2009) Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. doi:10.1136/bjsm.2009.063180

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas-exchange. J Appl Physiol 60:2020–2027

    CAS  PubMed  Google Scholar 

  • Berger NJA, Tolfrey K, Williams AG, Jones AM (2006) Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38:504–512

    Article  PubMed  Google Scholar 

  • Bhambhani Y, Maikala R, Buckley S (1998) Muscle oxygenation during incremental arm and leg exercise in men and women. Eur J Appl Physiol 78:422–431

    Article  CAS  Google Scholar 

  • Boone J, Koppo K, Bouckaert J (2008) The \( \dot{V}{\text{O}}_{2} \) response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respir Physiol Neurobiol 161:291−297

  • Carter H, Jones AM, Barstow TJ, Burnley M, Williams C, Doust JH (2000) Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol 89:1744–1752

    CAS  PubMed  Google Scholar 

  • Casaburi R, Storer TW, Ben-Dov I, Wasserman K (1987) Effect of endurance training on possible determinants of \( \dot{V}{\text{O}}_{2} \) during heavy exercise. J Appl Physiol 62:199−207

    Google Scholar 

  • Caso P, D’Andrea A, Galderisi M, Liccardo B, Severino S, De Simone L, Izzo A, D’Andrea L, Mininni N (2000) Pulsed Doppler tissue imaging in endurance athletes: relation between left ventricular preload and myocardial regional diastolic function. Am J Cardiol 85:1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Chilibeck PD, Paterson DH, Petrella RJ, Cunningham DA (1996) The influence of age and cardiorespiratory fitness on kinetics of oxygen uptake. Can J Appl Physiol 21:185–196

    CAS  PubMed  Google Scholar 

  • Cleuziou C, Lecoq AM, Candau R, Courteix D, Guenon P, Obert P (2002) Kinetics of oxygen uptake at the onset of moderate and heavy exercise in trained and untrained prepubertal children. Sci Sports 17:291–296

    Article  Google Scholar 

  • Cleuziou C, Perrey S, Borrani F, Lecoq AM, Candau R, Courteix D, Obert P (2003) Dynamic responses of O2 uptake at the onset and end of exercise in trained subjects. Can J Appl Physiol 28:630–641

    PubMed  Google Scholar 

  • Cooper DM, Berry C, Lamarra N, Wasserman K (1985) Kinetics of oxygen-uptake and heart-rate at onset of exercise in children. J Appl Physiol 59:211–217

    CAS  PubMed  Google Scholar 

  • Crow MT, Kushmerick MJ (1982) Chemical energetics of slow-twitch and fast-twitch muscles of the mouse. J Gen Physiol 79:147–166

    Article  CAS  PubMed  Google Scholar 

  • Daly RM, Rich PA, Klein R (1998) Hormonal responses to physical training in high-level peripubertal male gymnasts. Eur J Appl Physiol Occup Physiol 79:74–81

    Article  CAS  PubMed  Google Scholar 

  • Davis JA, Vodak P, Wilmore JH, Vodak J, Kurtz P (1976) Anaerobic threshold and maximal aerobic power for 3 modes of exercise. J Appl Physiol 41:544–550

    CAS  PubMed  Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B (1973) Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 87:485–497

    Article  CAS  PubMed  Google Scholar 

  • Fawkner S, Armstrong N (2003) Oxygen uptake kinetic response to exercise in children. Sports Med 33:651–669

    Article  PubMed  Google Scholar 

  • Fawkner S, Armstrong N (2004a) Longitudinal changes in the kinetic response to heavy-intensity exercise in children. J Appl Physiol 97:460–466

    Article  PubMed  Google Scholar 

  • Fawkner S, Armstrong N (2004b) Modelling the \( \dot{V}{\text{O}}_{2} \) kinetic response to heavy intensity exercise in children. Ergonomics 47:1517–1527

    Google Scholar 

  • Fawkner S, Armstrong N (2004c) Sex differences in the oxygen uptake kinetic response to heavy-intensity exercise in prepubertal children. Eur J Appl Physiol 93:210–216

    Article  PubMed  Google Scholar 

  • Fawkner S, Armstrong N (2007) Can we confidently study \( \dot{V}{\text{O}}_{2} \) kinetics in young people? J Sport Sci Med 6:277–285

    Google Scholar 

  • Fawkner S, Armstrong N, Potter CR, Welsman J (2002) Oxygen uptake kinetics in children and adults after the onset of moderate-intensity exercise. J Sports Sci 20:319–326

    Article  PubMed  Google Scholar 

  • Figueira TR, Caputo F, Machado CEP, Denadai BS (2008) Aerobic fitness level typical of elite athletes is not associated with even faster \( \dot{V}{\text{O}}_{2} \) kinetics during cycling exercise. J Sport Sci Med 7:132–138

    Google Scholar 

  • Fournier M, Ricci J, Taylor AW, Ferguson RJ, Montpetit RR, Chaitman BR (1982) Skeletal-muscle adaptation in adolescent boys—sprint and endurance training and detraining. Med Sci Sports Exerc 14:453–456

    CAS  PubMed  Google Scholar 

  • George KP, Wolfe LA, Burggraf GW (1991) The athletic heart syndrome: a critical review. Sports Med 11:300–330

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle—effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightma D, Appleton D (1973) Data on distribution of fiber types in 36 human muscles—autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Burnley M (2005) Effect of exercise modality on \( \dot{V}{\text{O}}_{2} \) kinetics. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London, pp 95–114

  • Jones AM, Koppo K (2005) Effect of training on \( \dot{V}{\text{O}}_{2} \) kinetics and performance. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London, pp 373–397

  • Jones AM, Poole DC (2005) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, London

    Google Scholar 

  • Katch VL (1983) Physical conditioning of children. J Adolesc Health 3:241–246

    Article  CAS  Google Scholar 

  • Koga S, Shiojiri T, Shibasaki M, Fukuba Y, Fukuoka Y, Kondo N (1996) Kinetics of oxygen uptake and cardiac output at onset of arm exercise. Respir Physiol 103:195–202

    Article  CAS  PubMed  Google Scholar 

  • Koga S, Shiojiri T, Shibasaki M, Kondo N, Fukuba Y, Barstow TJ (1999) Kinetics of oxygen uptake during supine and upright heavy exercise. J Appl Physiol 87:253–260

    CAS  PubMed  Google Scholar 

  • Koppo K, Bouckaert J (2005) Prior arm exercise speeds the \( \dot{V}{\text{O}}_{2} \) kinetics during arm exercise above the heart level. Med Sci Sports Exerc 37:613–619

    Google Scholar 

  • Koppo K, Bouckaert J, Jones AM (2002) Oxygen uptake kinetics during high-intensity arm and leg exercise. Respir Physiol Neurobiol 133:241–250

    Article  PubMed  Google Scholar 

  • Koppo K, Bouckaert J, Jones AM (2004) Effects of training status and exercise intensity on phase II \( \dot{V}{\text{O}}_{2} \) kinetics. Med Sci Sports Exerc 36:225–232

    Google Scholar 

  • Krustrup P, Secher NH, Relu MU, Hellsten Y, Soderlund K, Bangsbo J (2008) Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans. J Physiol Lond 586:6037–6048

    Article  CAS  PubMed  Google Scholar 

  • MacPhee SL, Shoemaker JK, Paterson DH, Kowalchuk JM (2005) Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. J Appl Physiol 99:1822–1834

    Article  PubMed  Google Scholar 

  • Mahon AD (2008) Aerobic training. In: Armstrong N, van Mechelen W (eds) Paediatric exercise science and medicine. Oxford University Press, Oxford, pp 513–529

    Google Scholar 

  • Meyer RA (1988) A linear-model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 254:C548–C553

    CAS  PubMed  Google Scholar 

  • Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34:689–694

    Article  PubMed  Google Scholar 

  • Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol Lond 571:669–681

    Article  CAS  PubMed  Google Scholar 

  • Norris SR, Petersen SR (1998) Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci 16:733–738

    Article  CAS  PubMed  Google Scholar 

  • Nottin S, Vinet A, Stecken F, N’Guyen LD, Ounissi F, Lecoq AM, Obert P (2002) Central and peripheral cardiovascular adaptations to exercise in endurance-trained children. Acta Physiol Scand 175:85–92

    Article  CAS  PubMed  Google Scholar 

  • Nottin S, Nguyen LD, Terbah M, Obert P (2004) Left ventricular function in endurance-trained children by tissue Doppler imaging. Med Sci Sports Exerc 36:1507–1513

    Article  PubMed  Google Scholar 

  • Obert P, Cleuziou C, Candau R, Courteix D, Lecoq AM, Guenon P (2000) The slow component of O2 uptake kinetics during high-intensity exercise in trained and untrained prepubertal children. Int J Sports Med 21:31–36

    Article  CAS  PubMed  Google Scholar 

  • Obert P, Mandigouts S, Nottin S, Vinet A, N’Guyen LD, Lecoq AM (2003) Cardiovascular responses to endurance training in children: effect of gender. Eur J Clin Invest 33:199–208

    Article  CAS  PubMed  Google Scholar 

  • Obert P, Nottin S, Baquet G, Thevenet D, Gamelin FX, Berthoin S (2009) Two months of endurance training does not alter diastolic function evaluated by TDI in 9–11-year-old boys and girls. Br J Sports Med 43:132–135

    Article  CAS  PubMed  Google Scholar 

  • Ogita F, Hara M, Tabata I (1996) Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 157:435–441

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM, Green HJ, MacDonald MJ, Hughson RL (1995) Progressive effect of endurance training on \( \dot{V}{\text{O}}_{2} \) kinetics at the onset of submaximal exercise. J Appl Physiol 79:1914–1920

    Google Scholar 

  • Poole DC, Kindig CA, Behnke BJ, Jones AM (2005) Oxygen uptake kinetics in different species: a brief review. Equine Comp Exerc Physiol 2:1–15

    Article  Google Scholar 

  • Poole DC, Barstow TJ, McDonough P, Jones AM (2008a) Control of oxygen uptake during exercise. Med Sci Sports Exerc 40:462–474

    Article  CAS  PubMed  Google Scholar 

  • Poole DC, Wilkerson DP, Jones AM (2008b) Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol 102:403–410

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Dodd S, Beadle RE (1985) Oxygen uptake kinetics in trained athletes differing in max \( \dot{V}{\text{O}}_{{2{ \max }}} \). Eur J Appl Physiol 54:306–308

    Google Scholar 

  • Pringle JSM, Doust JH, Carter H, Tolfrey K, Campbell IT, Jones AM, Sakkas GK (2003) Oxygen uptake kinetics during moderate, heavy and severe intensity ‘submaximal’ exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol 89:289–300

    Article  PubMed  Google Scholar 

  • Rowland TW, Unnithan VB, Macfarlane NG, Gibson NG, Paton JY (1994) Clinical manifestations of the athletes heart in prepubertal male runners. Int J Sports Med 15:515–519

    Article  CAS  PubMed  Google Scholar 

  • Rowland T, Bougault V, Walther G, Nottin S, Vinett A, Obert P (2009) Cardiac responses to swim bench exercise in age-group swimmers and non-athletic children. J Sci Med Sport 12:266–272

    Article  PubMed  Google Scholar 

  • Russell AP, Wadley G, Hesselink MKC, Schaart G, Lo S, Leger B, Garnham A, Kornips E, Cameron-Smith D, Giacobino JP, Muzzin P, Snow R, Schrauwen P (2003) UCP3 protein expression is lower in type I, IIa and IIx muscle fiber types of endurance-trained compared to untrained subjects. Pflugers Arch 445:563–569

    CAS  PubMed  Google Scholar 

  • Saltin B, Gollnick PD (1983) Skeletal muscle adaptability: significance for metabolism and performance. In: Peachy LD (ed) Handbook of physiology. Physiological Society, Bethesda, pp 555–631

    Google Scholar 

  • Schneider DA, Wing AN, Morris NR (2002) Oxygen uptake and heart rate kinetics during heavy exercise: a comparison between arm cranking and leg cycling. Eur J Appl Physiol 88:100–106

    Article  CAS  PubMed  Google Scholar 

  • Shephard RJ (1992) Effectiveness of training programmes for prepubescent children. Sports Med 13:194–213

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Amaral I, Doherty M, Price MJ, Jones AM (2006a) The influence of ramp rate on \( \dot{V}{\text{O}}_{2} \) peak and “excess” \( \dot{V}{\text{O}}_{2} \) during arm crank ergometry. Int J Sports Med 27:610–616

    Google Scholar 

  • Smith PM, McCrindle E, Doherty M, Price MJ, Jones AM (2006b) Influence of crank rate on the slow component of pulmonary O2 uptake during heavy arm-crank exercise. Appl Physiol Nutr Metab 31:292–301

    Article  PubMed  Google Scholar 

  • Tanner JM (1962) Growth of adolescence. Blackwell Scientific, Oxford

    Google Scholar 

  • Tsolakis C, Vagenas G, Dessypris A (2003) Growth and anabolic hormones, leptin, and neuromuscular performance in moderately trained prepubescent athletes and untrained boys. J Strength Cond Res 17:40–46

    Article  PubMed  Google Scholar 

  • Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B, Schena F, Ferretti G (1997) Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand 161:459–464

    Article  CAS  PubMed  Google Scholar 

  • Welsman JR, Armstrong N (2000) Statistical techniques for interpreting body size-related exercise performance during growth. Pediatr Exerc Sci 12:112–127

    Google Scholar 

  • Welsman JR, Armstrong N, Chedzoy S, Withers S (1996) Aerobic training in 10 year old and adult females. Med Sci Sports Exerc 28:3

    Article  Google Scholar 

  • Welsman J, Bywater K, Farr C, Welford D, Armstrong N (2005) Reliability of peak \( \dot{V}{\text{O}}_{2} \) and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J Appl Physiol 94:228–234

    Google Scholar 

  • Whipp BJ, Ward SA (1990) Physiological determinants of pulmonary gas-exchange kinetics during exercise. Med Sci Sports Exerc 22:62–71

    CAS  PubMed  Google Scholar 

  • Zakas A, Mandroukas K, Karamouzis G, Panagiotopoulou G (1994) Physical training, growth hormone and testosterone levels and blood pressure in prepubertal, pubertal and adolescent boys. Scand J Med Sci Sports 4:113–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melitta A. Winlove.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winlove, M.A., Jones, A.M. & Welsman, J.R. Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls. Eur J Appl Physiol 108, 1169–1179 (2010). https://doi.org/10.1007/s00421-009-1320-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1320-2

Keywords

Navigation