Skip to main content
Log in

Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We examined the effects of inspiratory muscle training (IMT) upon volitional hyperpnoea-mediated increases in blood lactate ([lac]B) during cycling at maximal lactate steady state (MLSS) power, and blood lactate and oxygen uptake kinetics at the onset of exercise. Twenty males formed either an IMT (n = 10) or control group (n = 10). Prior to and following a 6-week intervention, two 30 min trials were performed at MLSS (207 ± 28 W), determined using repeated 30 min constant power trials. The first was a reference trial, whereas during the second trial, from 20 to 28 min, participants mimicked the breathing pattern commensurate with 90% of the maximal incremental exercise test minute ventilation (\( \dot{V}_{\text{E}} \)). Prior to the intervention, the MLSS [lac]B was 3.7 ± 1.8 and 3.9 ± 1.6 mmol L−1 in the IMT and control groups, respectively. During volitional hyperpnoea, \( \dot{V}_{\text{E}} \) increased from 79.9 ± 9.5 and 76.3 ± 15.4 L min−1 at 20 min to 137.8 ± 15.2 and 135.0 ± 19.7 L min−1 in IMT and control groups, respectively; [lac]B concurrently increased by 1.0 ± 0.6 (+27%) and 0.9 ± 0.7 mmol L−1 (+25%), respectively (P < 0.05). Following the intervention, maximal inspiratory mouth pressure increased 19% in the IMT group only (P < 0.01). Following IMT only, the increase in [lac]B during volitional hyperpnoea was abolished (P < 0.05). In addition, the blood lactate (−28%) and phase II oxygen uptake (−31%) kinetics time constants at the onset of exercise and the MLSS [lac]B (−15%) were reduced (P < 0.05). We attribute these changes to an IMT-mediated increase in the oxidative and/or lactate transport capacity of the inspiratory muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ATS/ERS (2005) Standardization of spirometry: ATS/ERS Task Force. Eur Respir J 26:319–338

    Google Scholar 

  • Aunola S, Rusko H (1992) Does anaerobic threshold correlate with maximal lactate steady-state? J Sports Sci 10(4):309–323

    Article  PubMed  CAS  Google Scholar 

  • Babcock MA, Pegelow DF, McClaran SR et al (1995) Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol 78(5):1710–1719

    PubMed  CAS  Google Scholar 

  • Bailey SJ, Romer LM, Kelly J et al (2010) Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. J Appl Physiol 109(2):457–468

    Article  PubMed  Google Scholar 

  • Beneke R (2003) Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 89(1):95–99

    Article  PubMed  CAS  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    PubMed  CAS  Google Scholar 

  • Brooks GA (1986) The lactate shuttle during exercise and recovery. Med Sci Sports Exerc 18(3):360–368

    Article  PubMed  CAS  Google Scholar 

  • Brown PI, Sharpe GR, Johnson MA (2008) Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea. Eur J Appl Physiol 104(1):111–117

    Article  PubMed  CAS  Google Scholar 

  • Brown PI, Johnson MA, Sharpe GR (2009) Cycling cadence influences physiological parameters at maximal lactate steady state. J Sport Sci 26 (S2):S32

  • Brown PI, Sharpe GR, Johnson MA (2010) Loading of trained inspiratory muscles speeds lactate recovery kinetics. Med Sci Sports Exerc 42(6):1103–1112

    PubMed  Google Scholar 

  • Burnley M, Jones AM (2007) Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 7:63–79

    Article  Google Scholar 

  • Burnley M, Doust JH, Carter H et al (2001) Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans. Exp Physiol 86(3):417–425

    Article  PubMed  CAS  Google Scholar 

  • Candau R, Belli A, Millet GY et al (1998) Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans. Eur J Appl Physiol Occup Physiol 77(6):479–485

    Article  PubMed  CAS  Google Scholar 

  • Carra J, Candau R, Keslacy S et al (2003) Addition of inspiratory resistance increases the amplitude of the slow component of O2 uptake kinetics. J Appl Physiol 94(6):2448–2455

    PubMed  CAS  Google Scholar 

  • Chiappa GR, Ribeiro JP, Alves CN et al (2009) Inspiratory resistive loading after all-out exercise improves subsequent performance. Eur J Appl Physiol 106(2):297–303

    Article  PubMed  Google Scholar 

  • Cross TJ, Sabapathy S, Schneider DA et al (2010) Breathing He-O2 attenuates the slow component of O2 uptake kinetics during exercise performed above the respiratory compensation threshold. Exp Physiol 95(1):172–183

    Article  PubMed  Google Scholar 

  • Dempsey JA, Romer L, Rodman J et al (2006) Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151(2–3):242–250

    Article  PubMed  Google Scholar 

  • Downey AE, Chenoweth LM, Townsend DK et al (2007) Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 156(2):137–146

    Article  PubMed  Google Scholar 

  • Freedman S, Cooke NT, Moxham J (1983) Production of lactic acid by respiratory muscles. Thorax 38(1):50–54

    Article  PubMed  CAS  Google Scholar 

  • Griffiths LA, McConnell AK (2007) The influence of inspiratory and expiratory muscle training upon rowing performance. Eur J Appl Physiol 99(5):457–466

    Article  PubMed  Google Scholar 

  • Harms CA, Babcock MA, McClaran SR et al (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82(5):1573–1583

    PubMed  CAS  Google Scholar 

  • Henriksson J (2000) Cellular metabolism and endurance. In: Shephard RJ, Astrand PO (eds) Endurance in sport. Blackwell Science, London, pp 118–135

    Chapter  Google Scholar 

  • Johnson MA, Sharpe GR, McConnell AK (2006) Maximal voluntary hyperpnoea increases blood lactate concentration during exercise. Eur J Appl Physiol 96(5):600–608

    Article  PubMed  Google Scholar 

  • Johnson MA, Sharpe GR, Brown PI (2007) Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol 101(6):761–770

    Article  PubMed  Google Scholar 

  • Johnson MA, Sharpe GR, Brown PI (2009) Investigations of the lactate minimum test. Int J Sports Med 30(6):448–454

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Koppo K (2005) Effect of training on VO2 kinetics and performance. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport exercise and medicine. Routledge, London, pp 373–397

    Google Scholar 

  • Juel C, Holten MK, Dela F (2004) Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. J Physiol 556(Pt 1):297–304

    PubMed  CAS  Google Scholar 

  • Keslacy S, Matecki S, Carra J et al (2005) Effect of inspiratory threshold loading on ventilatory kinetics during constant-load exercise. Am J Physiol Regul Integr Comp Physiol 289(6):R1618–R1624

    Article  PubMed  CAS  Google Scholar 

  • Klas JV, Dempsey JA (1989) Voluntary versus reflex regulation of maximal exercise flow: volume loops. Am Rev Respir Dis 139(1):150–156

    Article  PubMed  CAS  Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA et al (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62(5):2003–2012

    Article  PubMed  CAS  Google Scholar 

  • Leddy JJ, Limprasertkul A, Patel S et al (2007) Isocapnic hyperpnea training improves performance in competitive male runners. Eur J Appl Physiol 99(6):665–676

    Article  PubMed  Google Scholar 

  • Marcinik EJ, Potts J, Schlabach G et al (1991) Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 23(6):739–743

    PubMed  CAS  Google Scholar 

  • McConnell AK, Sharpe GR (2005) The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration. Eur J Appl Physiol 94(3):277–284

    Article  PubMed  Google Scholar 

  • Ozyener F, Rossiter HB, Ward SA et al (2001) Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol 533(Pt 3):891–902

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Sarmiento A, Orozco-Levi M, Guell R et al (2002) Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes. Am J Respir Crit Care Med 166(11):1491–1497

    Article  PubMed  Google Scholar 

  • Redline S, Gottfried SB, Altose MD (1991) Effects of changes in inspiratory muscle strength on the sensation of respiratory force. J Appl Physiol 70(1):240–245

    PubMed  CAS  Google Scholar 

  • Renggli AS, Verges S, Notter DA et al (2008) Development of respiratory muscle contractile fatigue in the course of hyperpnoea. Respir Physiol Neurobiol 164(3):366–372

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002a) Effects of inspiratory muscle training on time-trial performance in trained cyclists. J Sports Sci 20(7):547–562

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002b) Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity. Int J Sports Med 23(5):353–360

    Article  PubMed  CAS  Google Scholar 

  • Sale DG, MacDougall JD, Jacobs I et al (1990) Interaction between concurrent strength and endurance training. J Appl Physiol 68(1):260–270

    PubMed  CAS  Google Scholar 

  • Sinoway L, Shenberger J, Leaman G et al (1996) Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise. J Appl Physiol 81(4):1778–1784

    PubMed  CAS  Google Scholar 

  • Spengler CM, Roos M, Laube SM et al (1999) Decreased exercise blood lactate concentrations after respiratory endurance training in humans. Eur J Appl Physiol Occup Physiol 79(4):299–305

    Article  PubMed  CAS  Google Scholar 

  • Spengler CM, Knopfli-Lenzin C, Birchler K et al (2000) Breathing pattern and exercise endurance time after exhausting cycling or breathing. Eur J Appl Physiol 81(5):368–374

    Article  PubMed  CAS  Google Scholar 

  • Staron RS, Karapondo DL, Kraemer WJ et al (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 76(3):1247–1255

    PubMed  CAS  Google Scholar 

  • Verges S, Lenherr O, Haner AC et al (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol Regul Integr Comp Physiol 292(3):R1246–R1253

    Article  PubMed  CAS  Google Scholar 

  • Verges S, Renggli AS, Notter DA et al (2009) Effects of different respiratory muscle training regimes on fatigue-related variables during volitional hyperpnoea. Respir Physiol Neurobiol 169(3):282–290

    Article  PubMed  Google Scholar 

  • Volianitis S, McConnell AK, Koutedakis Y et al (2001) Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 33(5):803–809

    PubMed  CAS  Google Scholar 

  • Wetter TJ, Dempsey JA (2000) Pulmonary system and endurance exercise. In: Shephard RJ, Astrand PO (eds) Endurance in sport. Blackwell Science, London, pp 52–67

    Google Scholar 

  • Wilson SH, Cooke NT, Edwards RH et al (1984) Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 39(7):535–538

    Article  PubMed  CAS  Google Scholar 

  • Witt JD, Guenette JA, Rupert JL et al (2007) Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J Physiol 584(Pt 3):1019–1028

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Brown.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, P.I., Sharpe, G.R. & Johnson, M.A. Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise. Eur J Appl Physiol 112, 2117–2129 (2012). https://doi.org/10.1007/s00421-011-2185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2185-8

Keywords

Navigation