Skip to main content

Advertisement

Log in

Low-level laser therapy in meniscal pathology: a double-blinded placebo-controlled trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We performed a randomized, double-blinded, placebo-controlled study (ISRCTN24203769) to assess the effectiveness of low-level laser therapy (LLLT) in patients with meniscal pathology, including only symptomatic patients with tiny focus of grade 3 attenuation (seen only on 0.7 thickness sequences) or intrasubstance tears with spot of grade 3 signal intensity approaching the articular surface. None of the patients in the study group underwent arthroscopy or new magnetic resonance imaging investigation. Paired-samples t test was used to detect significant changes in subjective knee pain over the experimental period within groups, and ANOVA was used to detect any significant differences between the two groups. Pain was significantly improved for the LLLT group than for the placebo group (F = 154, p < 0.0001). Pain scores were significantly better after LLLT. Four (12.5 %) patients did not respond to LLLT. At baseline, the average Lysholm score was 77 ± 4.6 for the LLLT group and 77.2 ± 2.6 for the placebo group (p > 0.05). Four weeks after LLLT or placebo therapy, the laser group reported an average Lysholm score of 82.5 ± 4.6, and the placebo group scored 79.0 ± 1.9. At 6 months, the laser group had an average Lysholm score of 82.2 ± 5.7, and after 1 year, they scored 81.6 ± 6.6 (F = 14.82923, p = 0.002). Treatment with LLLT was associated with a significant decrease of symptoms compared to the placebo group: it should be considered in patients with meniscal tears who do not wish to undergo surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Raber DA, Friederich NF, Hefti F (1998) Discoid lateral meniscus in children—long-term follow up after total meniscectomy. J Bone Joint Surg Am 80:1579–1586

    PubMed  CAS  Google Scholar 

  2. Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693

    Article  PubMed  Google Scholar 

  3. Turek SL (1984) Orthopedics: principles and their applications. JB Lippincott, Philadelphia

    Google Scholar 

  4. Stoller DW (1987) Meniscal tears: pathological correlation with MR imaging. Radiology 163:452

    Google Scholar 

  5. Tobler TH (1926) Makroskopische und histologische befund am kniegeluk meniscus in verschiedenen lebensaitern. Schweiz Med Wochenschr 56:1359

    Google Scholar 

  6. Roca FA, Vilalta A (1980) Lesions of the meniscus. I: macroscopic and histologic findings. Clin Orthop 146:289

    Google Scholar 

  7. Prade RFL, Burnett QM, Veenstra MA et al (1994) The prevalence of abnormal magnetic resonance imaging findings in asymptomatic knees. Am J Sports Med 22:739

    Article  Google Scholar 

  8. Smillie LS (1980) Diseases of the knee joint. Churchill-Livingstone, London

    Google Scholar 

  9. Mine T, Kimura M, Sakka A, Kawai S (2000) Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study. Arch Orthop Trauma Surg 120(3–4):201–204

    Article  PubMed  CAS  Google Scholar 

  10. Gray JC (1999) Neural and vascular anatomy of the menisci of the human knee. J Orthop Sports Phys Ther 29(1):23–30

    PubMed  CAS  Google Scholar 

  11. Basford RJ, Malanga AG, Krause AD, Harmsen SW (1998) A randomized controlled evaluation of low intensity laser therapy: plantar fasciitis. Arch Phys Med Rehab 79:249–254

    Article  CAS  Google Scholar 

  12. Cardinal E, Chhem RK, Beauregard CG et al (1996) Plantar fasciitis: sonographic evaluation. Radiology 201:257–259

    PubMed  CAS  Google Scholar 

  13. Chow RT, Barnsley L (2005) Systematic review of the literature of low-level laser therapy (LLLT) in the management of neck pain. Lasers Surg Med 37:46–52

    Article  PubMed  Google Scholar 

  14. Djavid GE, Mortazavi SMJ, Basirnia A et al (2003) A low level laser therapy in musculoskeletal pain syndromes: pain relief and disability reduction. Lasers Surg Med Suppl 15:43–43

    Google Scholar 

  15. Gam AN, Thorsen H, Lonnberg F (1993) The effect of low-level laser therapy on musculoskeletal pain: a meta-analysis. Pain 52:63–66

    Article  PubMed  CAS  Google Scholar 

  16. Jacobsen FM, Couppe C, Hilden J (1997) Comments on the use of low-level laser therapy (LLLT) in painful musculo-skeletal disorders. Pain 73:110–111

    Article  PubMed  CAS  Google Scholar 

  17. Reddy GK, Stehno-Bittel L, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit Achilles tendons. Lasers Surg Med 22:281–284

    Article  PubMed  CAS  Google Scholar 

  18. Walker J (1983) Relief from chronic pain by low power laser irradiation. Neurosci Lett 43:339–344

    Article  PubMed  CAS  Google Scholar 

  19. Downie WW, Leatham PA, Rhind VM et al (1978) Studies with pain rating scale. Am Rheum Dis 37:378–381

    Article  CAS  Google Scholar 

  20. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10:150–154

    Article  PubMed  CAS  Google Scholar 

  21. WALT (2004) Consensus agreement on the design and conduct of clinical studies with low level laser therapy and light therapy for musculoskeletal pain and disorders. http://www.walt.nu/images/stories/files/walt_standard_for_conduct_of_randomized_controlled_trials.pdf. Accessed 4 Novenber 2004

  22. Hegedus B, Viharos L, Gervain M, Galfi M (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27:577–584

    Article  PubMed  Google Scholar 

  23. Kiritsi O, Tsitas K, Malliaropoulos N, Mikroulis G (2010) Ultrasonographic evaluation of plantar fasciitis after low-level laser therapy: results of a double-blind, randomized, placebo-controlled trial. Lasers Med Sci 25:275–281

    Article  PubMed  Google Scholar 

  24. Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J (1984) Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol 11:1142–1150

    Article  PubMed  CAS  Google Scholar 

  25. Abergel RP, Dwyer RM, Meeker CA, Lask G, Kelly A, Uitto J (1984) Laser treatment of keloids: a clinical trial and in vitro study with Nd:YAG laser. Lasers Surg Med 4:291–295

    Article  PubMed  CAS  Google Scholar 

  26. Lam TS, Abergel RP, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Laser Life Sci 1(61):77

    Google Scholar 

  27. Lyons RF, Abergel RP, White RA, Dwyer RM, Castel JC, Uitto J (1987) Biostimulation of wound healing in vivo by a helium: neon laser. Ann Plast Surg 18:47–50

    Article  PubMed  CAS  Google Scholar 

  28. Enwemeka CS (1991) Connective tissue plasticity: ultrastructural, biomechanical and morphometric effects of physical factors on intact and regenerating tendons. J Orthop Sports Phys Ther 14:198–212

    PubMed  CAS  Google Scholar 

  29. Romanos GE, Pelekanos S, Strub JR (1995) Effects of Nd: YAG laser on wound healing processes: clinical and immunohistochemical findings in rat skin. Lasers Surg Med 16:368–379

    Article  PubMed  CAS  Google Scholar 

  30. Braverman B, McCarthy RJ, Ivankovich AD, Forde DE, Overfield M, Bapka MS (1989) Effect of He:Ne and infrared laser irradiation on wound healing in rabbits. Lasers Surg Med 9:50–58

    Article  PubMed  CAS  Google Scholar 

  31. Yu W, Naimm JO, Lanzafame RJ (1997) Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med 20:56–63

    Article  PubMed  CAS  Google Scholar 

  32. van Breugel HHFI, Bar PRD (1992) Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537

    Article  PubMed  Google Scholar 

  33. McCarty EC, Marx RG, DeHaven KE (2002) Meniscus repair: considerations in treatment and update of clinical results. Clin Orthop Rel Res 402:122–134

    Article  Google Scholar 

  34. Lee JM, Fu FH (2000) The meniscus: basic science and clinical applications. Oper Tech Orthop 10:162–168

    Article  Google Scholar 

  35. Senan V, Sucheendran J, Prasad KH, Balagopal K (2011) Histological features of meniscal injury. Kerala J Orthop 24:30–36

    Google Scholar 

  36. Longo L, Evangelista S, Tinacci G, Sesti AG (1987) Effects of diodes laser silver arsenide aluminium (GaAlAs) 904 nm on healing of experimental wounds. Laser Surg Med 5:444–448

    Article  Google Scholar 

  37. Lievens P (1988) The influence of laser treatment on the lymphatic system and on wound healing. Laser 1(2):6–12

    Google Scholar 

  38. Tam G (1999) Low power laser therapy and analgesic action. J Clin Laser Med Surg 17:29–33

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Maffulli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malliaropoulos, N., Kiritsi, O., Tsitas, K. et al. Low-level laser therapy in meniscal pathology: a double-blinded placebo-controlled trial. Lasers Med Sci 28, 1183–1188 (2013). https://doi.org/10.1007/s10103-012-1219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1219-8

Keywords

Navigation