Skip to main content
Log in

Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness

  • METHODS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

We describe how ordinary interpretations of causal models and causal graphs fail to capture important distinctions among ignorable allocation mechanisms for subject selection or allocation. We illustrate these limitations in the case of random confounding and designs that prevent such confounding. In many experimental designs individual treatment allocations are dependent, and explicit population models are needed to show this dependency. In particular, certain designs impose unfaithful covariate-treatment distributions to prevent random confounding, yet ordinary causal graphs cannot discriminate between these unconfounded designs and confounded studies. Causal models for populations are better suited for displaying these phenomena than are individual-level models, because they allow representation of allocation dependencies as well as outcome dependencies across individuals. Nonetheless, even with this extension, ordinary graphical models still fail to capture distinctions between hypothetical superpopulations (sampling distributions) and observed populations (actual distributions), although potential-outcome models can be adapted to show these distinctions and their consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ, Greenland S, Lash T, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 183–209.

    Google Scholar 

  2. Pearl J. Causality. 2nd ed. New York: Cambridge University Press; 2009.

    Book  Google Scholar 

  3. Hernán MA, Robins JM. Causal inference. London: Chapman & Hall/CRC; 2015.

    Google Scholar 

  4. Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15:413–9.

    Article  CAS  PubMed  Google Scholar 

  5. Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.

    Article  Google Scholar 

  6. Greenland S, Robins JM. Identifiability, exchangeability and confounding revisited. Epidemiol Perspect Innov. 2009;6:4.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rothman KJ. Epidemiologic methods in clinical trials. Cancer. 1977;39:1771–5.

    Article  CAS  PubMed  Google Scholar 

  8. Greenland S, Neutra RR. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9:361–7.

    Article  CAS  PubMed  Google Scholar 

  9. Matthews JNS. An introduction to randomised controlled clinical trials. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2006.

    Book  Google Scholar 

  10. Robins JM. Confidence intervals for causal parameters. Stat Med. 1988;7:773–85.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82:387–94.

    Article  Google Scholar 

  12. Senn SJ. Testing for baseline balance in clinical trials. Stat Med. 1994;13:1715–26.

    Article  CAS  PubMed  Google Scholar 

  13. Robins JM, Scheines R, Spirtes P, Wasserman L. Uniform consistency in causal inference. Biometrika. 2003;90:491–515.

    Article  Google Scholar 

  14. Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. 2nd ed. Cambridge: MIT Press; 2001.

    Google Scholar 

  15. Mansournia MA, Hernán MA, Greenland S. Matched designs and causal diagrams. Int J Epidemiol. 2013;42:860–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Mansournia MA, Greenland S. The relation of collapsibility and confounding to faithfulness and stability. Epidemiology. 2015;26: in press.

  17. Cox DR, Hinkley DV. Theoretical statistics. New York: Chapman and Hall; 1974.

    Book  Google Scholar 

  18. Greenland S. Randomization, statistics, and causal inference. Epidemiology. 1990;1:421–9.

    Article  CAS  PubMed  Google Scholar 

  19. Greenland S. On the logical justification of conditional tests for two-by-two contingency tables. Am Stat. 1991;45:248–51.

    Google Scholar 

  20. Rosenbaum PR. Observational studies. 2nd ed. New York: Springer; 2002.

    Book  Google Scholar 

  21. Richardson TS, Robins JM. Single world intervention graphs: a primer. Second UAI Workshop on Causal Structure Learning, Bellevue, Washington, 2013.

  22. Robins JM, Richardson TS. Alternative graphical causal models and the identification of direct effects. In: Shrout P, Keyes K, Ornstein K, editors. Causality and psychopathology: finding the determinants of disorders and their cures. Oxford: Oxford University Press; 2011. p. 1–52.

    Google Scholar 

  23. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.

    Article  CAS  PubMed  Google Scholar 

  24. Greenland S, Pearl J. Causal diagrams. In: Boslaugh S, editor. Encyclopedia of epidemiology. Thousand Oaks: Sage Publications; 2008. p. 149–56.

    Google Scholar 

  25. Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.

    Article  Google Scholar 

  26. Rubin DB. Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism. Biometrics. 1991;47:1213–34.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenbaum P, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.

    Article  Google Scholar 

  28. Ho DE, Imai K, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal. 2007;15:199–236.

    Article  Google Scholar 

  29. Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Waernbaum I. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation. Stat Med. 2012;31:1572–81.

    Article  PubMed  Google Scholar 

  31. Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc Ser B. 2014;76:243–63.

    Article  Google Scholar 

  32. Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70.

    Article  PubMed  Google Scholar 

  33. Fisher RA. The design of experiments. Edinburgh: Oliver and Boyd; 1935.

    Google Scholar 

  34. Robins JM, Morgenstern H. The foundations of confounding in epidemiology. Comp Math Appl. 1987;14:869–916.

    Article  Google Scholar 

  35. Senn S. Seven myths of randomisation in clinical trials. Stat Med. 2013;32:1439–50.

    Article  PubMed  Google Scholar 

  36. Rosenberger WF, Lachin JM. Randomization in clinical trials: theory and practice. New York: Wiley; 2002.

    Book  Google Scholar 

  37. Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 4th ed. New York: Springer; 2010.

    Book  Google Scholar 

  38. Chow SC, Liu JP. Design and analysis of clinical trials. 2nd ed. Hoboken: Wiley; 2004.

    Google Scholar 

  39. Lauritzen SL, Dawid AP, Larsen BN, Leimar HG. Independence properties of directed Markov fields. Networks. 1990;20:491–505.

    Article  Google Scholar 

  40. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.

    Article  CAS  PubMed  Google Scholar 

  41. Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology. 2003;14:680–6.

    Article  PubMed  Google Scholar 

  42. Kang JD, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data (with discussion). Stat Sci. 2007;22:523–80.

    Article  Google Scholar 

  43. Cochran WG. Sampling techniques. 3rd ed. New York: Wiley; 1977.

    Google Scholar 

  44. Sjölander A, Greenland S. Ignoring the matching variables in cohort studies—When is it valid and why? Stat Med. 2013;32:4696–708.

    Article  PubMed  Google Scholar 

  45. Greenland S, Pearl J. Adjustments and their consequences—collapsibility analysis using graphical models. Int Stat Rev. 2011;79:401–26.

    Article  Google Scholar 

  46. Gail MH. Adjusting for covariates that have the same distribution in exposed and unexposed cohorts. In: Moolgavkar SH, Prentice RL, editors. Modern statistical methods in chronic disease epidemiology. New York: Wiley; 1986. p. 3–18.

    Google Scholar 

  47. Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression. Int Stat Rev. 1991;59:227–40.

    Article  Google Scholar 

  48. Neuhaus J, Jewell NP. A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika. 1993;80:807–15.

    Article  Google Scholar 

  49. Robinson LD, Dorroh JR, Lien D, Tiku ML. The effects of covariate adjustment in generalized linear models. Commun Stat Theory Methods. 1998;27:1653–75.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers and Katherine Hoggatt for comments leading to clarification of several key points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mansournia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenland, S., Mansournia, M.A. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness. Eur J Epidemiol 30, 1101–1110 (2015). https://doi.org/10.1007/s10654-015-9995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-015-9995-7

Keywords

Navigation