Skip to main content

Advertisement

Log in

Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the hypothesis that mild traumatic brain injury (mTBI) triggers a controlled gene program as an adaptive response finalized to neuroprotection, similar to that found in hibernators and in ischemic preconditioning. A stretch injury device was used to produce an equi-biaxial strain field in rat organotypic hippocampal slice cultures at a specified Lagrangian strain of 10 % and a constant strain rate of 20 s−1. After 24 h from injury, propidium iodide staining, HPLC analysis of metabolites and microarray analysis of cDNA were performed to evaluate cell viability, cell energy state and gene expression, respectively. Compared to control cultures, 10 % stretch injured cultures showed no change in viability, but demonstrated a hypometabolic state (decreased ATP, ATP/ADP, and nicotinic coenzymes) and a peculiar pattern of gene modulation. The latter was characterized by downregulation of genes encoding for proteins of complexes I, III, and IV of the mitochondrial electron transport chain and of ATP synthase; downregulation of transcriptional and translational genes; downregulation and upregulation of genes controlling the synthesis of glutamate and GABA receptors, upregulation of calmodulin and calmodulin-binding proteins; proper modulation of genes encoding for proapoptotic and antiapoptotic proteins. These results support the hypothesis that, following mTBI, a hibernation-type response is activated in non-hibernating species. Unlike in hibernators and ischemic preconditioning, this adaptive gene programme, aimed at achieving maximal neuroprotection, is not triggered by decrease in oxygen availability. It seems rather activated to avoid increase in oxidative/nitrosative stress and apoptosis during a transient period of mitochondrial malfunctioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jennett B (1998) Epidemiology of head injury. Arch Dis Child 78:403–406

    PubMed  CAS  Google Scholar 

  2. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    PubMed  CAS  Google Scholar 

  3. Domeniconi M, Filbin MT (2005) Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci 233:43–47

    PubMed  CAS  Google Scholar 

  4. Comper P, Bisschop SM, Carnide N, Tricco A (2005) A systematic review of treatments for mild traumatic brain injury. Brain Inj 19:863–880

    PubMed  CAS  Google Scholar 

  5. Jay GW, Goka RS, Arakaki AH (1996) Minor traumatic brain injury: review of clinical data and appropriate evaluation and treatment. J Insur Med 27:262–282

    PubMed  CAS  Google Scholar 

  6. Feinstein A, Rapoport M (2000) Mild traumatic brain injury: the silent epidemic. Can J Public Health 91:325–326

    PubMed  CAS  Google Scholar 

  7. Buck PW (2011) Mild traumatic brain injury: a silent epidemic in our practices. Health Soc Work 36:299–302

    PubMed  Google Scholar 

  8. Giza CC, Hovda DA (2001) The neurometabolic cascade of concussion. J Athl Train 36:228–235

    PubMed  Google Scholar 

  9. Vagnozzi R, Signoretti S, Tavazzi B, Cimatti M, Amorini AM, Donzelli S, Delfini R, Lazzarino G (2005) Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence. Neurosurgery 57:164–171

    PubMed  Google Scholar 

  10. Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    PubMed  CAS  Google Scholar 

  11. Barkhoudarian G, Hovda DA, Giza CC (2011) The molecular pathophysiology of concussive brain injury. Clin Sports Med 30:33–48

    PubMed  Google Scholar 

  12. Bergsneider M, Hovda DA, Lee SM, Kelly DF, McArthur DL, Vespa PM, Lee JH, Huang SC, Martin NA, Phelps ME, Becker DP (2000) Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 17:389–401

    PubMed  CAS  Google Scholar 

  13. Vagnozzi R, Marmarou A, Tavazzi B, Signoretti S, Di Pierro D, del Bolgia F, Amorini AM, Fazzina G, Sherkat S, Lazzarino G (1999) Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J Neurotrauma 16:903–913

    PubMed  CAS  Google Scholar 

  14. Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P, Saatman KE, Wieloch T, Grady MS, McIntosh TK (2003) Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab 23:219–231

    PubMed  CAS  Google Scholar 

  15. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    PubMed  CAS  Google Scholar 

  16. Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R (2001) N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma 18:977–991

    PubMed  CAS  Google Scholar 

  17. Tavazzi B, Signoretti S, Lazzarino G, Amorini AM, Delfini R, Cimatti M, Marmarou A, Vagnozzi R (2005) Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery 56:582–589 (discussion 582–589)

    PubMed  Google Scholar 

  18. Vagnozzi R, Tavazzi B, Signoretti S, Amorini AM, Belli A, Cimatti M, Delfini R, Di Pietro V, Finocchiaro A, Lazzarino G (2007) Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part I. Neurosurgery 61:379–388

    PubMed  Google Scholar 

  19. Vagnozzi R, Signoretti S, Tavazzi B, Floris R, Ludovici A, Marziali S, Tarascio G, Amorini AM, Di Pietro V, Delfini R, Lazzarino G (2008) Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part III. Neurosurgery 62:1286–1295

    PubMed  Google Scholar 

  20. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, Ria A, Marziale S, Zoccatelli G, Tavazzi B, Del Bolgia F, Sorge R, Broglio SP, McIntosh TK, Lazzarino G (2010) Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 133:3232–3242

    PubMed  Google Scholar 

  21. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M, Tavazzi B, Vagnozzi R, Signoretti S, Amorini AM, Bellia F, Lazzarino G (2006) Extracellular N-acetylaspartate depletion in traumatic brain injury. J Neurochem 96:861–869

    PubMed  CAS  Google Scholar 

  22. Giza CC, Prins ML, Hovda DA, Herschman HR, Feldman JD (2002) Genes preferentially induced by depolarization after concussive brain injury: effects of age and injury severity. J Neurotrauma 19:387–402

    PubMed  Google Scholar 

  23. Li HH, Lee SM, Cai Y, Sutton RL, Hovda DA (2004) Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 21:1141–1153

    PubMed  Google Scholar 

  24. Di Pietro V, Amin D, Pernagallo S, Lazzarino G, Tavazzi B, Vagnozzi R, Pringle A, Belli A (2010) Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model. J Neurotrauma 27:349–359

    PubMed  Google Scholar 

  25. Zhou F, Zhu X, Castellani RJ, Stimmelmayr R, Perry G, Smith MA, Drew KL (2001) Hibernation, a model of neuroprotection. Am J Pathol 158:2145–2151

    PubMed  CAS  Google Scholar 

  26. Depre C, Vatner SF (2007) Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 12:307–317

    PubMed  CAS  Google Scholar 

  27. Schulz R, Post H, Sakka S, Wallbridge DR, Heusch G (1995) Intraischemic preconditioning—increased tolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion. Circ Res 76:942–950

    PubMed  CAS  Google Scholar 

  28. Vroom MB, van Wezel HB (1996) Myocardial stunning, hibernation, and ischemic preconditioning. J Cardiothorac Vasc Anesth 10:789–799

    PubMed  CAS  Google Scholar 

  29. Ferrari R, Cargnoni A, Bernocchi P, Pasini E, Curello S, Ceconi C, Ruigrok TJ (1996) Metabolic adaptation during a sequence of no-flow and low-flow ischemia. A possible trigger for hibernation. Circulation 94:2587–2596

    PubMed  CAS  Google Scholar 

  30. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, Chu X, Simon RP (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037

    PubMed  CAS  Google Scholar 

  31. Morrison B 3rd, Cater HL, Benham CD, Sundstrom LE (2006) An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 150:192–201

    PubMed  Google Scholar 

  32. Lazzarino G, Amorini AM, Fazzina G, Vagnozzi R, Signoretti S, Donzelli S, Di Stasio E, Giardina B, Tavazzi B (2003) Single-sample preparation for simultaneous cellular redox and energy state determination. Anal Biochem 322:51–59

    PubMed  CAS  Google Scholar 

  33. Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B (2005) Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem 38:997–1008

    PubMed  CAS  Google Scholar 

  34. Slemmer JE, Weber JT (2005) The extent of damage following repeated injury to cultured hippocampal cells is dependent on the severity of insult and inter-injury interval. Neurobiol Dis 18:421–431

    PubMed  Google Scholar 

  35. Soustiel JF, Larisch S (2010) Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 7:13–21

    PubMed  CAS  Google Scholar 

  36. Deng-Bryant Y, Prins ML, Hovda DA, Harris NG (2011) Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J Neurotrauma 28:1813–1825

    PubMed  Google Scholar 

  37. Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AM (2010) Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 27:293–298

    PubMed  Google Scholar 

  38. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511

    PubMed  CAS  Google Scholar 

  39. Singh BK, Tripathi M, Pandey PK, Kakkar P (2011) Alteration in mitochondrial thiol enhances calcium ion dependent membrane permeability transition and dysfunction in vitro: a cross-talk between mtThiol, Ca(2 +), and ROS. Mol Cell Biochem 357:373–385

    PubMed  CAS  Google Scholar 

  40. Kim GS, Jung JE, Narasimhan P, Sakata H, Yoshioka H, Song YS, Okami N, Chan PH (2011) Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase. J Cereb Blood Flow Metab 32:720–730

    PubMed  Google Scholar 

  41. Hardeland R (2009) Neuroprotection by radical avoidance: search for suitable agents. Molecules 14:5054–5102

    PubMed  CAS  Google Scholar 

  42. Kim DY, Kim SH, Choi HB, Min C, Gwag BJ (2001) High abundance of GluR1 mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons. Mol Cell Neurosci 17:1025–1033

    PubMed  CAS  Google Scholar 

  43. Van Damme K, Massie A, Vandesande F, Arckens L (2003) Distribution of the AMPA2 glutamate receptor subunit in adult cat visual cortex. Brain Res 960:1–8

    PubMed  Google Scholar 

  44. Boczek T, Kozaczuk A, Ferenc B, Kosiorek M, Pikula S, Zylinska L (2012) Gene expression pattern in PC12 cells with reduced PMCA2 or PMCA3 isoform: selective up-regulation of calmodulin and neuromodulin. Mol Cell Biochem 360:89–102

    PubMed  CAS  Google Scholar 

  45. Wang LC, Belke D, Jourdan ML, Lee TF, Westly J, Nurnberger F (1988) The “hibernation induction trigger”: specificity and validity of bioassay using the 13-lined ground squirrel. Cryobiology 25:355–362

    PubMed  CAS  Google Scholar 

  46. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518

    PubMed  CAS  Google Scholar 

  47. Nystul TG, Roth MB (2004) Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 101:9133–9136

    PubMed  CAS  Google Scholar 

  48. Budinger GR, Duranteau J, Chandel NS, Schumacker PT (1998) Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J Biol Chem 273:3320–3326

    PubMed  CAS  Google Scholar 

  49. Williams DR, Epperson LE, Li WZ, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY (2005) Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics 24:13–22

    PubMed  Google Scholar 

  50. Levy RJ (2007) Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28:24–28

    PubMed  CAS  Google Scholar 

  51. Storey KB, Storey JM (1990) Frozen and alive. Sci Am 263:92–97

    PubMed  CAS  Google Scholar 

  52. Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc 79:207–233

    PubMed  Google Scholar 

  53. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93:9493–9498

    PubMed  CAS  Google Scholar 

  54. Bocharova LS, Gordon R, Arkhipov VI (1992) Uridine uptake and RNA synthesis in the brain of torpid and awakened ground squirrels. Comp Biochem Physiol B 101:189–192

    PubMed  CAS  Google Scholar 

  55. Frerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95:14511–14516

    PubMed  CAS  Google Scholar 

  56. MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na + K + -ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429

    PubMed  CAS  Google Scholar 

  57. Chen JP, Yuan LH, Sun M, Zhang LB, Zhang SY (2008) Screening of hibernation-related genes in the brain of Rhinolophus ferrumequinum during hibernation. Comp Biochem Phys B 149:388–393

    Google Scholar 

  58. Zhao HW, Ross AP, Christian SL, Buchholz JN, Drew KL (2006) Decreased NR1 phosphorylation and decreased NMDAR function in hibernating Arctic ground squirrels. J Neurosci Res 84:291–298

    PubMed  CAS  Google Scholar 

  59. Ross AP, Christian SL, Zhao HW, Drew KL (2006) Persistent tolerance to oxygen and nutrient deprivation and N-methyl-D-aspartate in cultured hippocampal slices from hibernating Arctic ground squirrel. J Cereb Blood Flow Metab 26:1148–1156

    PubMed  CAS  Google Scholar 

  60. Wang SQ, Lakatta EG, Cheng H, Zhou ZQ (2002) Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 205:2957–2962

    PubMed  CAS  Google Scholar 

  61. Laurer HL, Bareyre FM, Lee VM, Trojanowski JQ, Longhi L, Hoover R, Saatman KE, Raghupathi R, Hoshino S, Grady MS, McIntosh TK (2001) Mild head injury increasing the brain’s vulnerability to a second concussive impact. J Neurosurg 95:859–870

    PubMed  CAS  Google Scholar 

  62. Longhi L, Saatman KE, Fujimoto S, Raghupathi R, Meaney DF, Davis J, McMillan BSA, Conte V, Laurer HL, Stein S, Stocchetti N, McIntosh TK (2005) Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery 56:364–374

    PubMed  Google Scholar 

  63. Ranaivo HR, Zunich SM, Choi N, Hodge JN, Wainwright MS (2011) Mild stretch-induced injury increases susceptibility to interleukin-1 beta-induced release of matrix metalloproteinase-9 from astrocytes. J Neurotrauma 28:1757–1766

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Wessex Medical Research Centre for funding this study and for their support to our research. We also wish to thank Ms. Kathryn Rasco for her technical assistance in the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lazzarino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Pietro, V., Amorini, A.M., Tavazzi, B. et al. Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Mol Cell Biochem 375, 185–198 (2013). https://doi.org/10.1007/s11010-012-1541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1541-2

Keywords

Navigation