Skip to main content

Advertisement

Log in

Role of distorted body image in pain

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Body image is the way a person’s body feels to them. Growing evidence shows that body image can be distorted in people with pain, particularly chronic pain. Most data relate to people with deafferentation via amputation or neural injury, but deafferentation is neither sufficient nor necessary for distorted body image or pain. In this review, we examine the literature relating to body image distortion in people with pain, and we discuss three themes: 1) evidence of distorted body image in people with pain; 2) evidence of distortion of the neural representations of body image held in primary sensory and primary motor cortex; and 3) clinical findings that correlate with distorted body image, distorted neural representation, or both. We then review the emerging evidence regarding therapeutic approaches to distorted body image in people with painful disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Novy DM, Nelson DV, Averill PM, Berry LA: Gender differences in the expression of depressive symptoms among chronic pain patients. Clin J Pain 1996, 12:23–29.

    Article  PubMed  CAS  Google Scholar 

  2. Lewis JS, Kersten P, McCabe CS, et al.: Body perception disturbance: A contribution to pain in complex regional pain syndrome (CRPS). Pain 2007, Epub ahead of print.

  3. Harris AJ: Cortical origin of pathological pain. Lancet 1999, 354:1464–1466.

    Article  PubMed  CAS  Google Scholar 

  4. Craig A: How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev Neurosci 2002, 3:655–666.

    CAS  Google Scholar 

  5. Gandevia SC: Illusory movements produced by electrical-stimulation of low-threshold muscle afferents from the hand. Brain 1985, 108:965–981.

    Article  PubMed  Google Scholar 

  6. Craske B: Perception of impossible limb positions induced by tendon vibration. Science 1977, 196:71–73.

    Article  PubMed  CAS  Google Scholar 

  7. Moseley GL, McCormick K, Hudson M, Zalucki N: Disrupted cortical proprioceptive representation evokes symptoms of peculiarity, foreignness and swelling, but not pain. Rheumatology 2006, 45:196–200.

    Article  PubMed  CAS  Google Scholar 

  8. Paqueron X, Leguen M, Rosenthal D, et al.: The phenomenology of body image distortions induced by regional anaesthesia. Brain 2003, 126:702–712.

    Article  PubMed  CAS  Google Scholar 

  9. Ephraim PL, Wegener ST, MacKenzie EJ, et al.: Phantom pain, residual limb pain, and back pain in amputees: Results of a national survey. Arch Phys Med Rehabil 2005, 86:1910–1919.

    Article  PubMed  Google Scholar 

  10. Pezzin LE, Dillingham TR, MacKenzie EJ: Rehabilitation and the long-term outcomes of persons with trauma-related amputations. Arch Phys Med Rehabil 2000, 81:292–300.

    Article  PubMed  CAS  Google Scholar 

  11. Giummarra MJ, Gibson SJ, Georgiou-Karistianis N, Bradshaw JL: Central mechanisms in phantom limb perception: The past, present and future. Brain Res Rev 2007, 54:219–232.

    Article  PubMed  Google Scholar 

  12. Haigh RC, McCabe CS, Halligan PW, Blake DR: Joint stiffness in a phantom limb: evidence of central nervous system involvement in rheumatoid arthritis. Rheumatology 2003, 42:888–892.

    Article  PubMed  CAS  Google Scholar 

  13. Sellal F, RenaseauLeclerc C, Labrecque R: The man who had six arms. Analysis of supernumerary phantom limbs after right hemisphere stroke. Rev Neurol (Paris) 1996, 152:190–195.

    CAS  Google Scholar 

  14. Halligan PW, Marshall JC, Wade DT: Three arms: a case study of supernumerary phantom limb after right hemisphere stroke. J Neurolog Neurosurg Psychiat 1993, 56:159–166.

    Article  CAS  Google Scholar 

  15. Moseley GL: Distorted body image in complex regional pain syndrome type 1. Neurology 2005, 65:773.

    Article  PubMed  Google Scholar 

  16. Lewis JS, McCabe CS, Blake DR: Body perception disturbance in complex regional pain syndrome. Rheumatology 2005, 44:I111–I112.

    Article  Google Scholar 

  17. Claus A, Hides JA, Moseley GL, Hodges P: Sitting versus standing: does the intradiscal pressure cause disc degeneration or low back pain? J Electromyog Kinesiol 2007, Epub ahead of print.

  18. Brumagne S, Cordo P, Lysens R, et al.: The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine 2000, 25:989–994.

    Article  PubMed  CAS  Google Scholar 

  19. Asell M, Sjolander P, Kerschbaumer H, Djupsjobacka M: Are lumbar repositioning errors larger among patients with chronic low back pain compared with asymptomatic subjects? Arch Phys Med Rehabil 2006, 87:1170–1176.

    Article  PubMed  Google Scholar 

  20. Moseley G, Hodges P: Chronic pain and motor control. In Grieves Modern Manual Therapy of the Vertebral column, 4 edn. Edited by Jull G, Boyling J. Edinburgh: Churchill-Livingstone; 2005:215–231.

    Google Scholar 

  21. Tremere L, Hicks TP, Rasmusson DD: Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors. J Neurophysiol 2001, 86:94–103.

    PubMed  CAS  Google Scholar 

  22. Elbert T, Rockstroh B: Reorganization of human cerebral cortex: The range of changes following use and injury. Neuroscientist 2004, 10:129–141.

    Article  PubMed  Google Scholar 

  23. Braun C, Schweizer R, Elbert T, et al.: Differential activation in somatosensory cortex for different discrimination tasks. J Neurosci 2000, 20:446–450.

    PubMed  CAS  Google Scholar 

  24. Braun C, Heinz U, Schweizer R, et al.: Dynamic organization of the somatosensory cortex induced by motor activity. Brain 2001, 124(Pt 11):2259–2267.

    Article  PubMed  CAS  Google Scholar 

  25. Weiss T, Miltner WH, Liepert J, et al.: Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. Eur J Neurosci 2004, 20:3413–3423.

    Article  PubMed  Google Scholar 

  26. Pleger B, Ragert P, Schwenkreis P, et al.: Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage 2006, 32:503–510.

    Article  PubMed  Google Scholar 

  27. Merzenich MM, Nelson RJ, Stryker MP, et al.: Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984, 224:591–605.

    Article  PubMed  CAS  Google Scholar 

  28. Pons TP, Garraghty PE, Ommaya AK, et al.: Massive cortical reorganization after sensory deafferentation in adult macaques. Science 1991, 252:1857–1860. [Comment in: Science 1992, 258:1159–60; Science 1994, 265:546–548.]

    Article  PubMed  CAS  Google Scholar 

  29. Elbert T, Flor H, Birbaumer N, et al.: Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 1994, 5:2593–2597.

    Article  PubMed  CAS  Google Scholar 

  30. Yang TT, Gallen C, Schwartz B, et al.: Sensory maps in the human brain. Nature 1994, 368:592–593.

    Article  PubMed  CAS  Google Scholar 

  31. Ojemann JG, Silbergeld DL: Cortical stimulation mapping of phantom limb rolandic cortex — case report. J Neurosurg 1995, 82:641–644.

    PubMed  CAS  Google Scholar 

  32. Flor H, Nikolajsen L, Jensen TS: Phantom limb pain: a case of maladaptive CNS plasticity? Nature Rev Neurosci 2006, 7:873–881.

    Article  CAS  Google Scholar 

  33. Cohen LG, Bandinelli S, Findley TW, Hallett M: Motor reorganization after upper limb amputation in man—a study with focal magnetic stimulation. Brain 1991, 114:615–627.

    Article  PubMed  Google Scholar 

  34. Kew JJ, Ridding MC, Rothwell JC, et al.: Reorganization of cortical blood-flow and transcranial magnetic stimulation maps in human-subjects after upper-limb amputation. J Neurophysiol 1994, 72:2517–2524.

    PubMed  CAS  Google Scholar 

  35. Pascual-Leone A, Peris M, Tormos JM, et al.: Reorganization of human cortical motor output maps following traumatic forearm amputation. Neuroreport 1996, 7:2068–2070.

    Article  PubMed  CAS  Google Scholar 

  36. Karl A, Birbaumer N, Lutzenberger W, et al.: Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 2001, 21:3609–3618.

    PubMed  CAS  Google Scholar 

  37. Lotze M, Flor H, Grodd W, et al.: Phantom movements and pain — An MRI study in upper limb amputees. Brain 2001, 124:2268–2277.

    Article  PubMed  CAS  Google Scholar 

  38. Lotze M, Grodd W, Birbaumer N, et al.: Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci 1999, 2:501–502.

    Article  PubMed  CAS  Google Scholar 

  39. Lotze M, Montoya P, Erb M, et al.: Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 1999, 11:491–501.

    Article  PubMed  CAS  Google Scholar 

  40. van Rijn MA, Marinus J, Putter H, van Hilten JJ: Onset and progression of dystonia in complex regional pain syndrome. Pain 2007, 130:287–293.

    Article  PubMed  Google Scholar 

  41. Juottonen K, Gockel M, Silen T, et al.: Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain 2002, 98:315–323.

    Article  PubMed  Google Scholar 

  42. Maihofner C, Handwerker HO, Neundorfer B, Birklein F: Cortical reorganization during recovery from complex regional pain syndrome. Neurology 2004, 63:693–701.

    PubMed  Google Scholar 

  43. Krause P, Forderreuther S, Straube A: Motor cortical representation in patients with complex regional pain syndrome. A TMS study [in German]. Schmerz 2006, 20:186–188.

    Article  Google Scholar 

  44. Maihofner C, Baron R, DeCol R, et al.: The motor system shows adaptive changes in complex regional pain syndrome. Brain 2007, Epub ahead of print.

  45. Siddal P, Yezierski RP, Loeser JD: Taxonomy and epidemiology of spinal cord injury pain. In Progress in Pain Research and Management. Edited by Burchiel KJ, Yezierski R. Seattle: IASP; 2002:9–23.

    Google Scholar 

  46. Lotze M, Laubis-Herrmann U, Topka H: Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury. Restor Neurol Neurosci 2006, 24:97–107.

    PubMed  CAS  Google Scholar 

  47. Lotze M, Laubis-Herrmann U, Topka H, et al.: Reorganization in the primary motor cortex after spinal cord injury — A functional magnetic resonance (fMRI) study. Restor Neurol Neurosci 1999, 14:183–187.

    PubMed  Google Scholar 

  48. Flor H, Braun C, Elbert T, Birbaumer N: Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 1997, 224:5–8.

    Article  PubMed  CAS  Google Scholar 

  49. Spitzer M, Bohler P, Weisbrod M, Kischka U: A neural network model of phantom limbs. Biol Cybern 1995, 72:197–206.

    Article  PubMed  CAS  Google Scholar 

  50. Devor M, Seltzer Z: Pathophysiology of damaged nerves in relation to chronic pain. In The Textbook of Pain, 4 edn. Edited by Wall P, Melzack R. Edinburgh: Churchill Livingstone; 1999:129–164.

    Google Scholar 

  51. Verley R, Onnen I: Somatotopic organization of the tactile thalamus in normal adult and developing mice and in adult mice dewhiskered since birth. Exp Neurol 1981, 72:462–474.

    Article  PubMed  CAS  Google Scholar 

  52. Kaas JH: Is most of neural plasticity in the thalamus cortical? Proc Natl Acad Sci U S A 1999, 96:7622–7623.

    Article  PubMed  CAS  Google Scholar 

  53. Kaas JH, Florence SL: Mechanisms of reorganization in sensory systems of primates after peripheral nerve injury. Adv Neurol 1997, 73:147–158.

    PubMed  CAS  Google Scholar 

  54. Pelled G, Chuang KH, Dodd SJ, Koretsky AP: Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation. Neuroimage 2007, 37:262–273.

    Article  PubMed  Google Scholar 

  55. Schwenkreis P, Witscher K, Janssen F, et al.: Changes of cortical excitability in patients with upper limb amputation. Neurosci Lett 2000, 293:143–146.

    Article  PubMed  CAS  Google Scholar 

  56. Flor H, Elbert T, Knecht S, et al.: Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995, 375:482–484.

    Article  PubMed  CAS  Google Scholar 

  57. Takano B, Drzezga A, Peller M, et al.: Short-term modulation of regional excitability and blood flow in human motor cortex following rapid-rate transcranial magnetic stimulation. Neuroimage 2004, 23:849–859.

    Article  PubMed  Google Scholar 

  58. Florence SL, Boydston LA, Hackett TA, Lachoff HT, Strata F, Niblock MM. Sensory enrichment after peripheral nerve injury restores cortical, not thalamic, receptive field organization. Eur J Neurosci 2001;13(9):1755–1766.

    Article  PubMed  CAS  Google Scholar 

  59. Karl A, Muhlnickel W, Kurth R, Flor H: Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 2004, 110:90–102.

    Article  PubMed  Google Scholar 

  60. Eisenberg E, Chistyakov AV, Yudashkin M, et al.: Evidence for cortical hyperexcitability of the affected limb representation area in CRPS: a psychophysical and transcranial magnetic stimulation study. Pain 2005, 113:99–105.

    Article  PubMed  Google Scholar 

  61. Birbaumer N, Lutzenberger W, Montoya P, et al.: Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 1997, 17:5503–5508.

    PubMed  CAS  Google Scholar 

  62. Maihofner C, Neundorfer B, Birklein F, Handwerker HO: Mislocalization of tactile stimulation in patients with complex regional pain syndrome. J Neurol 2006, 253:772–779.

    Article  PubMed  Google Scholar 

  63. McCabe CS, Haigh RC, Halligan PW, Blake DR: Referred sensations in patients with complex regional pain syndrome type 1. Rheumatology 2003, 42:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  64. Acerra N, Moseley GL: Dysynchiria: Watching the mirror image of the unaffected limb elicits pain on the affected side. Neurology 2005, 65:751–753.

    Article  PubMed  Google Scholar 

  65. Ramachandran VS, Rogers Ramachandran D, Stewart M: Perceptual correlates of massive cortical reorganization. Science 1992, 258:1159–1160.

    Article  PubMed  CAS  Google Scholar 

  66. Knecht S, Henningsen H, Elbert T, et al.: Cortical reorganization in human amputees and mislocalization of painful stimuli to the phantom limb. Neurosci Lett 1995, 201:262–264.

    Article  PubMed  CAS  Google Scholar 

  67. Acerra N, Souvlis T, Moseley G: Stroke, complex regional pain syndrome and phantom limb pain: Can commonalities direct future management? J Rehabil Med 2007, 39:109–114.

    Article  PubMed  Google Scholar 

  68. Maihofner C, Handwerker HO, Neundorfer B, Birklein F: Patterns of cortical reorganization in complex regional pain syndrome. Neurology 2003, 61:1707–1715.

    PubMed  Google Scholar 

  69. Pleger B, Tegenthoff M, Schwenkreis P, et al.: Mean sustained pain levels are linked to hemispherical side-to-side differences of primary somatosensory cortex in the complex regional pain syndrome I. Exp Brain Res 2004, 155:115–119.

    Article  PubMed  Google Scholar 

  70. Flor H, Denke C, Schaefer M, Grusser S: Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001, 357:1763–1764.

    Article  PubMed  CAS  Google Scholar 

  71. Macaluso E, Driver J: Spatial attention and crossmodal interactions between vision and touch. Neuropsychologia 2001, 39:1304–1316.

    Article  PubMed  CAS  Google Scholar 

  72. Moseley GL: Using visual illusion to reduce at-level neuropathic pain in paraplegia. Pain 2007, 130:294–298.

    Article  PubMed  Google Scholar 

  73. Parsons LM: Integrating cognitive psychology, neurology and neuroimaging. Acta Psychol (Amst) 2001, 107:155–181.

    Article  CAS  Google Scholar 

  74. Moseley GL: Graded motor imagery is effective for long-standing complex regional pain syndrome. Pain 2004, 108:192–198.

    Article  PubMed  CAS  Google Scholar 

  75. Moseley GL: Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain 2005, 114:54–61.

    Article  PubMed  Google Scholar 

  76. Moseley GL: Graded motor imagery for pathologic pain — A randomized controlled trial. Neurology 2006, 67:2129–2134.

    Article  PubMed  Google Scholar 

  77. Butler D, Moseley GL: Explain Pain. Adelaide: NOI Group Publishing; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lorimer Moseley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotze, M., Moseley, G.L. Role of distorted body image in pain. Curr Rheumatol Rep 9, 488–496 (2007). https://doi.org/10.1007/s11926-007-0079-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-007-0079-x

Keywords

Navigation