Skip to main content
Log in

Clinical Tools to Evaluate Bone Strength

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Although dual-energy absorptiometry (DXA) has proven its clinical utility, there are many limitations to using areal bone mineral density (aBMD) measured by DXA to predict bone strength and fracture risk. Recent advances in imaging techniques including quantitative computed tomography (QCT) and magnetic resonance imaging (MRI) have led to non-invasive assessment of bone macro-architecture and micro-architecture. Analysis techniques such as finite element (FE) modelling use image data to estimate the ability of a bone to carry load, and provide new insight into treatment effects and fracture risk. QCT and MRI can image clinically relevant sites such as the lumbar spine and proximal femur. High-resolution peripheral QCT (HR-pQCT) offers superior resolution at peripheral sites including the radius and tibia. Measures obtained from QCT and HR-pQCT have been significantly associated with fracture risk independently of DXA-derived parameters. FE models derived from QCT, HR-pQCT, and MRI are capable of detecting treatment-induced changes in bone strength, and preliminary results suggest that QCT and HR-pQCT-derived FE models can discriminate fracture cases from controls. Continued advances in image acquisition and analysis will improve our ability to predict fracture and to understand factors associated with bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization. Prevention and Management of Osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 2003;921:1–192.

    Google Scholar 

  2. Bolotin HH, Sievanen H. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res. 2001;16(5):799–805.

    Article  PubMed  CAS  Google Scholar 

  3. Nelson HD, Helfand M, Woolf SH, Allan JD. Screening for postmenopausal osteoporosis: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2002;137(6):529–41.

    PubMed  Google Scholar 

  4. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res. 2003;18(11):1947–54.

    Article  PubMed  Google Scholar 

  5. Jarvinen TL, Sievanen H, Khan KM, Heinonen A, Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008;336(7636):124–6. (Clinical research ed.).

    Article  PubMed  Google Scholar 

  6. Bouxsein ML, Delmas PD. Considerations for development of surrogate endpoints for antifracture efficacy of new treatments in osteoporosis: a perspective. J Bone Miner Res. 2008;23(8):1155–67.

    Article  PubMed  Google Scholar 

  7. Zysset PK, Goulet RW, Hollister SJ. A global relationship between trabecular bone morphology and homogenized elastic properties. J Biomech Eng. 1998;120(5):640–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.

    Article  PubMed  CAS  Google Scholar 

  9. Brouwers JE, van Rietbergen B, Huiskes R, Ito K. Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int. 2009;20(11):1823–35.

    Article  PubMed  CAS  Google Scholar 

  10. Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT. Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res. 1994;12(2):211–8.

    Article  PubMed  CAS  Google Scholar 

  11. Holzer G, von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 2009;24(3):468–74.

    Article  PubMed  Google Scholar 

  12. MacNeil JA, Boyd SK. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone. 2007;41(1):129–37.

    Article  PubMed  Google Scholar 

  13. Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing. 2006;35:27–31.

    Article  Google Scholar 

  14. Hayes WC. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow VC, Hayes WC, editors. Basic orthopaedic biomechanics. New York: Raven Press, Ltd.; 1991.

    Google Scholar 

  15. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2009. doi:10.1359/jbmr.091020.

  16. Manske SL, Liu-Ambrose T, Cooper DM, Kontulainen S, Guy P, Forster BB, et al. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int. 2009;20(3):445–53.

    Article  PubMed  CAS  Google Scholar 

  17. Yeni YN, Brown CU, Wang Z, Norman TL. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 1997;21(5):453–9.

    Article  PubMed  CAS  Google Scholar 

  18. Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  19. Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech. 1988;21(2):131–9.

    Article  PubMed  CAS  Google Scholar 

  20. McCalden RW, McGeough JA, Barker MB, Court-Brown CM. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Jt Surg Am. 1993;75(8):1193–205.

    CAS  Google Scholar 

  21. Wachter NJ, Augat P, Krischak GD, Sarkar MR, Mentzel M, Kinzl L, et al. Prediction of strength of cortical bone in vitro by microcomputed tomography. Clin Biomech. 2001;16(3):252–6.

    Article  CAS  Google Scholar 

  22. Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J. Regional differences in cortical porosity in the fractured femoral neck. Bone. 1999;24(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  23. Barth R, Williams J, Kaplan F. Osteon morphometry in females with femoral neck fractures. Clin Orthop Relat Res. 1992;283:178–86.

    PubMed  Google Scholar 

  24. Squillante R, Williams J. Videodensitometry of osteons in females with femoral neck fractures. Calcif Tissue Int. 1993;52(4):273–7.

    Article  PubMed  CAS  Google Scholar 

  25. Ostertag A, Cohen-Solal M, Audran M, Legrand E, Marty C, Chappard D, et al. Vertebral fractures are associated with increased cortical porosity in iliac crest bone biopsy of men with idiopathic osteoporosis. Bone. 2009;44(3):413–7.

    Article  PubMed  Google Scholar 

  26. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.

    Article  PubMed  Google Scholar 

  27. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):123–62.

    Article  PubMed  Google Scholar 

  28. Silverman PM, Kalender WA, Hazle JD. Common terminology for single and multislice helical CT. AJR Am J Roentgenol. 2001;176(5):1135–6.

    PubMed  CAS  Google Scholar 

  29. Kalender WA. CT: the unexpected evolution of an imaging modality. Eur Radiol. 2005;15(Suppl 4):D21–4.

    PubMed  Google Scholar 

  30. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–24.

    Article  PubMed  Google Scholar 

  31. Engelke K, Mastmeyer A, Bousson V, Fuerst T, Laredo JD, Kalender WA. Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone. 2009;44(4):566–72.

    Article  PubMed  Google Scholar 

  32. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr. 1999;23(1):130–7.

    Article  PubMed  CAS  Google Scholar 

  33. Biggemann M, Hilweg D, Brinckmann P. Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skelet Radiol. 1988;17(4):264–9.

    Article  CAS  Google Scholar 

  34. Mosekilde L, Bentzen SM, Ortoft G, Jorgensen J. The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone. 1989;10(6):465–70.

    Article  PubMed  CAS  Google Scholar 

  35. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone. 1999;25(6):713–24.

    Article  PubMed  CAS  Google Scholar 

  36. Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone. 2007;40(3):767–74.

    Article  PubMed  Google Scholar 

  37. Eriksson SA, Isberg BO, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int. 1989;44(4):243–50.

    Article  PubMed  CAS  Google Scholar 

  38. Griffith JF, Genant HK. Bone mass and architecture determination: state of the art. Best Pract Res. 2008;22(5):737–64.

    Google Scholar 

  39. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone. 1997;21(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  40. Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, et al. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006;17(6):855–64.

    Article  PubMed  CAS  Google Scholar 

  41. Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES. Dimensions and volumetric BMD of the proximal femur and their relation to age among older US men. J Bone Miner Res. 2006;21(8):1197–206.

    Article  PubMed  Google Scholar 

  42. Sigurdsson G, Aspelund T, Chang M, Jonsdottir B, Sigurdsson S, Eiriksdottir G, et al. Increasing sex difference in bone strength in old age: the age, gene/environment susceptibility-reykjavik study (AGES-REYKJAVIK). Bone. 2006;39(3):644–51.

    Article  PubMed  Google Scholar 

  43. Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, et al. Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone. 2009;45(1):110–8.

    Article  PubMed  Google Scholar 

  44. Issever AS, Link TM, Kentenich M, Rogalla P, Schwieger K, Huber MB, et al. Trabecular bone structure analysis in osteoporotic spine using a clinical in vivo set-up for 64-slice MDCT imaging: comparison to muCT imaging and muFE modeling. J Bone Miner Res. 2009;24(9):1628–37.

    Article  PubMed  Google Scholar 

  45. Rüegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A. Quantification of bone mineralization using computed tomography. Radiology. 1976;121(1):93–7.

    PubMed  Google Scholar 

  46. Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, et al. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int. 2006;17(8):1241–51.

    Article  PubMed  CAS  Google Scholar 

  47. Augat P, Iida H, Jiang Y, Diao E, Genant HK. Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res. 1998;16(5):629–35.

    Article  PubMed  CAS  Google Scholar 

  48. Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F. Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res. 2002;17(9):1629–38.

    Article  PubMed  Google Scholar 

  49. Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, et al. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int. 2006;17:1241–51.

    Article  PubMed  CAS  Google Scholar 

  50. Ashby RL, Ward KA, Roberts SA, Edwards L, Mughal MZ, Adams JE. A reference database for the Stratec XCT-2000 peripheral quantitative computed tomography (pQCT) scanner in healthy children and young adults aged 6–19 years. Osteoporos Int. 2009;20(8):1337–46.

    Article  PubMed  CAS  Google Scholar 

  51. Butz S, Wuster C, Scheidt-Nave C, Gotz M, Ziegler R. Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int. 1994;4(4):179–84.

    Article  PubMed  CAS  Google Scholar 

  52. Rüegsegger P, Dambacher MA, Rüegsegger E, Fischer JA, Anliker M. Bone loss in premenopausal and postmenopausal women. A cross-sectional and longitudinal study using quantitative computed tomography. J Bone Jt Surg Am. 1984;66(7):1015–23.

    Google Scholar 

  53. Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, et al. Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):59–74.

    Article  PubMed  Google Scholar 

  54. Diederichs G, Link T, Marie K, Huber M, Rogalla P, Burghardt A, et al. Feasibility of measuring trabecular bone structure of the proximal femur using 64-slice multidetector computed tomography in a clinical setting. Calcif Tissue Int. 2008;83(5):332–41.

    Article  PubMed  CAS  Google Scholar 

  55. Issever AS, Link TM, Kentenich M, Rogalla P, Burghardt AJ, Kazakia GJ, et al. Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol. 2009. doi:10.1007/s00330-009-1571-7.

  56. Graeff C, Timm W, Nickelsen TN, Farrerons J, Marin F, Barker C, et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res. 2007;22(9):1426–33.

    Article  PubMed  CAS  Google Scholar 

  57. Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res. 2005;20(10):1828–36.

    Article  PubMed  Google Scholar 

  58. Bauer JS, Link TM, Burghardt A, Henning TD, Mueller D, Majumdar S, et al. Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int. 2007;80(6):366–73.

    Article  PubMed  CAS  Google Scholar 

  59. Prevrhal S, Engelke K, Kalender WA. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol. 1999;44(3):751–64.

    Article  PubMed  CAS  Google Scholar 

  60. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, et al. Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 1999;14(1):111–9.

    Article  PubMed  CAS  Google Scholar 

  61. Reddy JN. An introduction to the finite element method. 2nd ed. New York: McGraw-Hill; 1993.

    Google Scholar 

  62. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22(1):149–57.

    Article  PubMed  CAS  Google Scholar 

  63. Keyak JH, Meagher JM, Skinner HB, Mote JCD. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng. 1990;12(5):389–97.

    Article  PubMed  CAS  Google Scholar 

  64. Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int. 2002;13(4):278–87.

    Article  PubMed  CAS  Google Scholar 

  65. van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 1995;28(1):69–81.

    Article  PubMed  Google Scholar 

  66. Müller R, Rüegsegger P. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys. 1995;17(2):126–33.

    Article  PubMed  Google Scholar 

  67. Bevill G, Eswaran SK, Farahmand F, Keaveny TM. The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone. 2009;44(4):573–8.

    Article  PubMed  Google Scholar 

  68. Homminga J, Huiskes R, van Rietbergen B, Rüegsegger P, Weinans H. Introduction and evaluation of a gray-value voxel conversion technique. J Biomech. 2001;34(4):513–7.

    Article  PubMed  CAS  Google Scholar 

  69. Boyd SK, Müller R, Zernicke RF. Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res. 2002;17(4):687–94.

    Article  PubMed  Google Scholar 

  70. MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.

    Article  PubMed  Google Scholar 

  71. van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech. 1996;29(12):1653–7.

    PubMed  Google Scholar 

  72. Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33(12):1575–83.

    Article  PubMed  CAS  Google Scholar 

  73. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.

    Article  PubMed  CAS  Google Scholar 

  74. Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng. 2003;125(4):434–8.

    Article  PubMed  Google Scholar 

  75. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24(3):475–83.

    Article  PubMed  Google Scholar 

  76. Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int. 2009;20(5):801–10.

    Article  PubMed  CAS  Google Scholar 

  77. Graeff C, Chevalier Y, Charlebois M, Varga P, Pahr D, Nickelsen TN, et al. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res. 2009;24(10):1672–80.

    Article  PubMed  CAS  Google Scholar 

  78. Jergas M, Breitenseher M, Glüer CC, Yu W, Genant HK. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res. 1995;10(7):1101–10.

    Article  PubMed  CAS  Google Scholar 

  79. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res. 1997;12(5):697–711.

    Article  PubMed  CAS  Google Scholar 

  80. Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995;5(6):433–9.

    Article  PubMed  CAS  Google Scholar 

  81. Ito M, Hayashi K, Ishida Y, Uetani M, Yamada M, Ohki M, et al. Discrimination of spinal fracture with various bone mineral measurements. Calcif Tissue Int. 1997;60(1):11–5.

    Article  PubMed  CAS  Google Scholar 

  82. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int. 1993;3(3):120–6.

    Article  PubMed  CAS  Google Scholar 

  83. Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, et al. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res. 2008;23(8):1326–33.

    Article  PubMed  Google Scholar 

  84. Keaveny TM, Bouxsein ML. Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res. 2008;23(10):1541–7.

    Article  PubMed  Google Scholar 

  85. Formica CA, Nieves JW, Cosman F, Garrett P, Lindsay R. Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int. 1998;8(5):460–7.

    Article  PubMed  CAS  Google Scholar 

  86. Clowes JA, Eastell R, Peel NF. The discriminative ability of peripheral and axial bone measurements to identify proximal femoral, vertebral, distal forearm and proximal humeral fractures: a case control study. Osteoporos Int. 2005;16(12):1794–802.

    Article  PubMed  Google Scholar 

  87. Schneider P, Reiners C, Cointry GR, Capozza RF, Ferretti JL. Bone quality parameters of the distal radius as assessed by pQCT in normal and fractured women. Osteoporos Int. 2001;12(8):639–46.

    Article  PubMed  CAS  Google Scholar 

  88. Laib A, Häuselmann HJ, Rüegsegger P. In vivo high resolution 3D-QCT of the human forearm. Technol Health Care. 1998;6(5–6):329–37.

    PubMed  CAS  Google Scholar 

  89. Laib A, Rüegsegger P. Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph. 1999;23(2):69–74.

    Article  PubMed  CAS  Google Scholar 

  90. Laib A, Hildebrand T, Häuselmann HJ, Rüegsegger P. Ridge number density: a new parameter for in vivo bone structure analysis. Bone. 1997;21(6):541–6.

    Article  PubMed  CAS  Google Scholar 

  91. Liu XS, Zhang XH, Sekhon KK, Adam MF, McMahon DJ, Bilezikian JP, et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2009. doi:10.1359/jbmr.090822.

  92. MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2008;30(6):792–9.

    Article  PubMed  Google Scholar 

  93. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    Article  PubMed  CAS  Google Scholar 

  94. Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20(10):1683–94.

    Article  PubMed  CAS  Google Scholar 

  95. Vico L, Zouch M, Amirouche A, Frere D, Laroche N, Koller B, et al. High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res. 2008;23(11):1741–50.

    Article  PubMed  Google Scholar 

  96. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.

    Article  PubMed  Google Scholar 

  97. Boutroy S, van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res. 2008;23(3):392–9.

    Article  PubMed  Google Scholar 

  98. Krug R, Carballido-Gamio J, Burghardt AJ, Kazakia G, Hyun BH, Jobke B, et al. Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo. Osteoporos Int. 2008;19(5):653–61.

    Article  PubMed  CAS  Google Scholar 

  99. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239(2):488–96.

    Article  PubMed  Google Scholar 

  100. Krug R, Han ET, Banerjee S, Majumdar S. Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med. 2006;56(5):1033–40.

    Article  PubMed  CAS  Google Scholar 

  101. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997;12(1):111–8.

    Article  PubMed  CAS  Google Scholar 

  102. Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, et al. Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone. 2004;35(1):266–76.

    Article  PubMed  CAS  Google Scholar 

  103. Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, et al. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int. 2002;13(1):6–17.

    Article  PubMed  CAS  Google Scholar 

  104. Kazakia GJ, Hyun B, Burghardt AJ, Krug R, Newitt DC, de Papp AE, et al. In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res. 2008;23(4):463–74.

    Article  PubMed  Google Scholar 

  105. Rajapakse CS, Magland J, Zhang XH, Liu XS, Wehrli SL, Guo XE, et al. Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J Orthop Res. 2009;27(10):1263–71.

    Article  PubMed  Google Scholar 

  106. Zhang XH, Liu XS, Vasilic B, Wehrli FW, Benito M, Rajapakse CS, et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res. 2008;23(9):1426–34.

    Article  PubMed  Google Scholar 

  107. Chesnut CH 3rd, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, et al. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res. 2005;20(9):1548–61.

    Article  PubMed  CAS  Google Scholar 

  108. Wehrli FW, Ladinsky GA, Jones C, Benito M, Magland J, Vasilic B, et al. In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res. 2008;23(5):730–40.

    Article  PubMed  Google Scholar 

  109. Black DM, Bouxsein ML, Palermo L, McGowan JA, Newitt DC, Rosen E, et al. Randomized trial of once-weekly parathyroid hormone (1–84) on bone mineral density and remodeling. J Clin Endocrinol Metab. 2008;93(6):2166–72.

    Article  PubMed  CAS  Google Scholar 

  110. Hudelmaier M, Kollstedt A, Lochmuller EM, Kuhn V, Eckstein F, Link TM. Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporos Int. 2005;16(9):1124–33.

    Article  PubMed  Google Scholar 

  111. Pauchard Y, Ayres FJ, Szabo E, MacDonald H, Hanley DA, Boyd SK. A comparison of manual and automated methods for the standardization of subject motion artifact in HR-pQCT. J Bone Miner Res. 2009;24(Suppl 1). Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=bb077e9f-21f0-4010-9113-d6a5f6d08c02. Accessed 29 Sept 2009.

  112. Shepherd JA, Fan B, Lu Y, Lewiecki EM, Miller P, Genant HK. Comparison of BMD precision for Prodigy and Delphi spine and femur scans. Osteoporos Int. 2006;17(9):1303–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manske, S.L., Macdonald, H.M., Nishiyama, K.K. et al. Clinical Tools to Evaluate Bone Strength. Clinic Rev Bone Miner Metab 8, 122–134 (2010). https://doi.org/10.1007/s12018-009-9066-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9066-2

Keywords

Navigation