Skip to main content

Advertisement

Log in

Update on the female athlete triad

  • Women's Issues (MA Goolsby, Section editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Updated prevalence estimates of all 3 components of the Female Athlete Triad, a syndrome characterized by low energy availability, functional hypothalamic amenorrhea, and osteoporosis, is low (0 %–16 %), however, estimates of 1 or 2 concurrent components approach 50 %–60 % among certain athlete groups. Recent research identifies components of the Triad among female adolescent athletes, particularly those participating in leanness sports, such as endurance running. This is alarming, as adolescents require adequate nutrition and normal hormone function to optimize bone mineral gains during this critical developmental period. Current literature highlights new assessments, such as measurements of bone microarchitecture and hormone levels to better evaluate bone strength and the hormonal and metabolic profile of athletes with and at risk for the Triad. Recent data also provides support for additional potential consequences of the Triad, such as endothelial dysfunction and related cardiovascular effects, stress fractures, and musculoskeletal injuries. Additional prospective research is needed to evaluate long-term indicators and consequences of the Triad and identify effective behavioral treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine position stand. The female athlete triad Med Sci Sports Exerc. 2007;39:1867–82.

    Article  Google Scholar 

  2. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366:74–85.

    Article  PubMed  CAS  Google Scholar 

  3. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19:1231–40.

    Article  PubMed  Google Scholar 

  4. Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2012. doi:10.1249/MSS.0b013e31827e1bdc.

  5. De Souza MJ, Toombs RJ, Scheid JL, O'Donnell E, West SL, Williams NI. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25:491–503.

    Article  PubMed  CAS  Google Scholar 

  6. De Souza MJ, Miller BE, Loucks AB, Luciano AA, Pescatello LS, Campbell CG, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83:4220–32.

    Article  PubMed  Google Scholar 

  7. Broocks A, Pirke KM, Schweiger U, Tuschl RJ, Laessle RG, Strowitzki T, et al. Cyclic ovarian function in recreational athletes. J Appl Physiol. 1990;68:2083–6.

    PubMed  CAS  Google Scholar 

  8. Ellison PT, Lager C. Moderate recreational running is associated with lowered salivary progesterone profiles in women. Am J Obstet Gynecol. 1986;154:1000–3.

    PubMed  CAS  Google Scholar 

  9. Winters KM, Adams WC, Meredith CN, Loan MD, Lasley BL. Bone density and cyclic ovarian function in trained runners and active controls. Med Sci Sports Exerc. 1996;28:776–85.

    Article  PubMed  CAS  Google Scholar 

  10. Hoch AZ, Pajewski NM, Moraski L, Carrera GF, Wilson CR, Hoffman RG, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19:421–8.

    Article  PubMed  Google Scholar 

  11. Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160:137–42.

    Article  PubMed  Google Scholar 

  12. Barrack MT, Rauh MJ, Nichols JF. Cross-sectional evidence of suppressed bone mineral accrual among female adolescent runners. J Bone Miner Res. 2010;25:1850–7.

    Article  PubMed  Google Scholar 

  13. Mudd LM, Fornetti W, Pivarnik JM. Bone mineral density in collegiate female athletes: comparisons among sports. J Athl Train. 2007;42:403–8.

    PubMed  Google Scholar 

  14. Cobb KL, Bachrach LK, Greendale G, Marcus R, Neer RM, Nieves J, et al. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc. 2003;35:711–9.

    Article  PubMed  Google Scholar 

  15. Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res. 1995;10:26–35.

    Article  PubMed  CAS  Google Scholar 

  16. Beals KA, Hill AK. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab. 2006;16:1–23.

    PubMed  Google Scholar 

  17. Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc. 2008;40:2015–21.

    Article  PubMed  Google Scholar 

  18. Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, et al. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008;121:1127–36.

    Article  PubMed  Google Scholar 

  19. Ackerman KE, Slusarz K, Guereca G, Pierce L, Slattery M, Mendes M, et al. Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am J Physiol Endocrinol Metab. 2012;302:E800–6.

    Article  PubMed  CAS  Google Scholar 

  20. Barrack MT, Van Loan MD, Rauh MJ, Nichols JF. Physiologic and behavioral indicators of energy deficiency in female adolescent runners with elevated bone turnover. Am J Clin Nutr. 2010;92:652–9.

    Article  PubMed  CAS  Google Scholar 

  21. Barrack MT, Van Loan MD, Rauh MJ, Nichols JF. Body Mass, training, menses, and bone in adolescent runners: a 3-year follow-up. Med Sci Sports Exerc. 2011;43:959–66.

    Article  PubMed  Google Scholar 

  22. • Fredericson M, Kent K. Normalization of bone density in a previously amenorrheic runner with osteoporosis. Med Sci Sports Exerc. 2005;37:1481–6. A female athlete, diagnosed with anorexia nervosa during adolescence, who during approximately 5 years of weight gain and normalization of menses during her third decade of life, experienced a concurrent increase in lumbsr spine bone mineral density level from a below-normal T-score of -2.50 to within the normal BMD range.

    Article  PubMed  Google Scholar 

  23. Hind K. Recovery of bone mineral density and fertility in a former amenorrheic athlete. J Sports Sci Med. 2008;7:415–8.

    Google Scholar 

  24. Castro J, Toro J, Lazaro L, Pons F, Halperin I. Bone mineral density in male adolescents with anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2002;41:613–8.

    Article  PubMed  Google Scholar 

  25. Fredericson M, Chew K, Ngo J, Cleek T, Kiratli J, Cobb K. Regional bone mineral density in male athletes: a comparison of soccer players, runners, and controls. Br J Sports Med. 2007;41:664–8. discussion 668.

    Article  PubMed  Google Scholar 

  26. Barrack MT, Giacomazzi C, Barrack FA, Nattiv A. Diet Patterns, anthropometric measures, bone density and injury among male adolescent runners and nonrunner athletes. Med Sci Sports Exerc. 2012;44 Suppl 2:109.

    Google Scholar 

  27. Kemmler W, Engelke K, Baumann H, Beeskow C, von Stengel S, Weineck J, et al. Bone status in elite male runners. Eur J Appl Physiol. 2006;96:78–85.

    Article  PubMed  Google Scholar 

  28. Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone. 2006;39:880–5.

    Article  PubMed  CAS  Google Scholar 

  29. Hackney AC, Fahrner CL, Stupnicki R. Reproductive hormonal responses to maximal exercise in endurance-trained men with low resting testosterone levels. Exp Clin Endocrinol Diabetes. 1997;105:291–5.

    Article  PubMed  CAS  Google Scholar 

  30. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc. 1996;28:180–9.

    PubMed  CAS  Google Scholar 

  31. Hackney AC. Endurance training and testosterone levels. Sports Med. 1989;8:117–27.

    Article  PubMed  CAS  Google Scholar 

  32. Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc. 1988;20:60–5.

    Article  PubMed  CAS  Google Scholar 

  33. Arce JC, De Souza MJ, Pescatello LS, Luciano AA. Subclinical alterations in hormone and semen profile in athletes. Fertil Steril. 1993;59:398–404.

    PubMed  CAS  Google Scholar 

  34. Roberts AC, McClure RD, Weiner RI, Brooks GA. Overtraining affects male reproductive status. Fertil Steril. 1993;60:686–92.

    PubMed  CAS  Google Scholar 

  35. Wheeler GD, Singh M, Pierce WD, Epling WF, Cumming DC. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J Clin Endocrinol Metab. 1991;72:422–5.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer JS, Link TM. Advances in osteoporosis imaging. Eur J Radiol. 2009;71:440–9.

    Article  PubMed  Google Scholar 

  37. Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology. 2011;93:65–73.

    Article  PubMed  CAS  Google Scholar 

  38. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96:3123–33.

    Article  PubMed  CAS  Google Scholar 

  39. Ackerman KE, Putman M, Guereca G, Taylor AP, Pierce L, Herzog DB, et al. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone. 2012;51:680–7.

    Article  PubMed  Google Scholar 

  40. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90:6508–15.

    Article  PubMed  CAS  Google Scholar 

  41. Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, et al. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology. 2008;249:938–46.

    Article  PubMed  Google Scholar 

  42. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res. 2008;23:392–9.

    Article  PubMed  Google Scholar 

  43. Barrack MT, Rauh MJ, Barkai HS, Nichols JF. Dietary restraint and low bone mass in female adolescent endurance runners. Am J Clin Nutr. 2008;87:36–43.

    PubMed  CAS  Google Scholar 

  44. Nichols JF, Rauh MJ, Barrack MT, Barkai HS, Pernick Y. Disordered eating and menstrual irregularity in high school athletes in lean-build and nonlean-build sports. Int J Sport Nutr Exerc Metab. 2007;17:364–77.

    PubMed  Google Scholar 

  45. Vescovi JD, Scheid JL, Hontscharuk R, De Souza MJ. Cognitive dietary restraint: impact on bone, menstrual and metabolic status in young women. Physiol Behav. 2008;95:48–55.

    Article  PubMed  CAS  Google Scholar 

  46. Sundgot-Borgen J. Nutrient intake of female elite athletes suffering from eating disorders. Int J Sport Nutr. 1993;3:431–42.

    PubMed  CAS  Google Scholar 

  47. De Souza MJ, Hontscharuk R, Olmsted M, Kerr G, Williams NI. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite. 2007;48:359–67.

    Article  PubMed  Google Scholar 

  48. Gibbs JC, Williams NI, Scheid JL, Toombs RJ, De Souza MJ. The association of a high drive for thinness with energy deficiency and severe menstrual disturbances: confirmation in a large population of exercising women. Int J Sport Nutr Exerc Metab. 2011;21:280–90.

    PubMed  Google Scholar 

  49. Garner DM, Garfinkel PE, Bonato DP. Body image measurement in eating disorders. Adv Psychosom Med. 1987;17:119–33.

    PubMed  CAS  Google Scholar 

  50. Sundgot-Borgen J. Risk and trigger factors for the development of eating disorders in female elite athletes. Med Sci Sports Exerc. 1994;26:414–9.

    PubMed  CAS  Google Scholar 

  51. Scheid JL, Williams NI, West SL, VanHeest JL, De Souza MJ. Elevated PYY is associated with energy deficiency and indices of subclinical disordered eating in exercising women with hypothalamic amenorrhea. Appetite. 2009;52:184–92.

    Article  PubMed  CAS  Google Scholar 

  52. O'Connor PJ, Lewis RD, Kirchner EM. Eating disorder symptoms in female college gymnasts. Med Sci Sports Exerc. 1995;27:550–5.

    PubMed  Google Scholar 

  53. Stunkard AJ, Messick S. The 3-factor eating questionnaire to measure dietary restraint, disinhibition, and hunger. J Psychosom Res. 1985;29:71–83.

    Article  PubMed  CAS  Google Scholar 

  54. Barr SI, Prior JC, Vigna YM. Restrained eating and ovulatory disturbances: possible implications for bone health. Am J Clin Nutr. 1994;59:92–7.

    PubMed  CAS  Google Scholar 

  55. McLean JA, Barr SI. Cognitive dietary restraint is associated with eating behaviors, lifestyle practices, personality characteristics, and menstrual irregularity in college women. Appetite. 2003;40:185–92.

    Article  PubMed  Google Scholar 

  56. Bedford JL, Prior JC, Barr SI. A prospective exploration of cognitive dietary restraint, subclinical ovulatory disturbances, cortisol, and change in bone density over 2 years in healthy young women. J Clin Endocrinol Metab. 2010;95:3291–9.

    Article  PubMed  CAS  Google Scholar 

  57. Schweiger U, Tuschl RJ, Platte P, Broocks A, Laessle RG, Pirke KM. Everyday eating behavior and menstrual function in young women. Fertil Steril. 1992;57:771–5.

    PubMed  CAS  Google Scholar 

  58. McLean JA, Barr SI, Prior JC. Dietary restraint, exercise, and bone density in young women: are they related? Med Sci Sports Exerc. 2001;33:1292–6.

    Article  PubMed  CAS  Google Scholar 

  59. Van Loan MD, Keim NL. Influence of cognitive eating restraint on total-body measurements of bone mineral density and bone mineral content in premenopausal women aged 18–45 y: a cross-sectional study. Am J Clin Nutr. 2000;72:837–43.

    PubMed  Google Scholar 

  60. Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2006;91:1027–33.

    Article  PubMed  CAS  Google Scholar 

  61. De Souza MJ, Williams NI. Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update. 2004;10:433–48.

    Article  PubMed  Google Scholar 

  62. King NA, Lluch A, Stubbs RJ, Blundell JE. High dose exercise does not increase hunger or energy intake in free living males. Eur J Clin Nutr. 1997;51:478–83.

    Article  PubMed  CAS  Google Scholar 

  63. King NA, Burley VJ, Blundell JE. Exercise-induced suppression of appetite: effects on food intake and implications for energy balance. Eur J Clin Nutr. 1994;48:715–24.

    PubMed  CAS  Google Scholar 

  64. Whybrow S, Hughes DA, Ritz P, Johnstone AM, Horgan GW, King N, et al. The effect of an incremental increase in exercise on appetite, eating behaviour and energy balance in lean men and women feeding ad libitum. Br J Nutr. 2008;100:1109–15.

    Article  PubMed  CAS  Google Scholar 

  65. Stubbs RJ, Sepp A, Hughes DA, Johnstone AM, King N, Horgan G, et al. The effect of graded levels of exercise on energy intake and balance in free-living women. Int J Obes Relat Metab Disord. 2002;26:866–9.

    Article  PubMed  CAS  Google Scholar 

  66. Hubert P, King NA, Blundell JE. Uncoupling the effects of energy expenditure and energy intake: appetite response to short-term energy deficit induced by meal omission and physical activity. Appetite. 1998;31:9–19.

    Article  PubMed  CAS  Google Scholar 

  67. Martins C, Kulseng B, King NA, Holst JJ, Blundell JE. The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat. J Clin Endocrinol Metab. 2010;95:1609–16.

    Article  PubMed  CAS  Google Scholar 

  68. Burns SF, Broom DR, Miyashita M, Mundy C, Stensel DJ. A single session of treadmill running has no effect on plasma total ghrelin concentrations. J Sports Sci. 2007;25:635–42.

    Article  PubMed  Google Scholar 

  69. Kraemer RR, Durand RJ, Hollander DB, Tryniecki JL, Hebert EP, Castracane VD. Ghrelin and other glucoregulatory hormone responses to eccentric and concentric muscle contractions. Endocrine. 2004;24:93–8.

    Article  PubMed  CAS  Google Scholar 

  70. Zach KN, Smith Machin AL, Hoch AZ. Advances in management of the female athlete triad and eating disorders. Clin Sports Med. 2011;30:551–73.

    Article  PubMed  Google Scholar 

  71. d'Arminio A, Sabin CA, Phillips AN, Reiss P, Weber R, Kirk O, et al. Cardio- and cerebrovascular events in HIV-infected persons. AIDS. 2004;18:1811–7.

    Article  PubMed  Google Scholar 

  72. Mendelsohn ME. Estrogen actions in the cardiovascular system. Climacteric. 2009;12 Suppl 1:18–21.

    Article  PubMed  CAS  Google Scholar 

  73. Anderson TJ, Gerhard MD, Meredith IT, Charbonneau F, Delagrange D, Creager MA, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75:71B–4.

    Article  PubMed  CAS  Google Scholar 

  74. Zeni Hoch A, Dempsey RL, Carrera GF, Wilson CR, Chen EH, Baranabei VM, et al. Is there an association between athletic amenorrhea and endothelial cell dysfunction? Med Sci Sports Exerc. 2003;35:377–83.

    Article  PubMed  Google Scholar 

  75. Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, Hirschberg AL. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005;90:1354–9.

    Article  PubMed  CAS  Google Scholar 

  76. Yoshida N, Ikeda H, Sugi K, Imaizumi T. Impaired endothelium-dependent and -independent vasodilation in young female athletes with exercise-associated amenorrhea. Arterioscler Thromb Vasc Biol. 2006;26:231–2.

    Article  PubMed  CAS  Google Scholar 

  77. Hoch AZ, Papanek P, Szabo A, Widlansky ME, Schimke JE, Gutterman DD. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21:119–25.

    Article  PubMed  Google Scholar 

  78. Hoch AZ, Lynch SL, Jurva JW, Schimke JE, Gutterman DD. Folic acid supplementation improves vascular function in amenorrheic runners. Clin J Sport Med. 2010;20:205–10.

    Article  PubMed  Google Scholar 

  79. Hoch AZ, Papanek P, Szabo A, Widlansky ME, Gutterman DD. Folic acid supplementation improves vascular function in professional dancers with endothelial dysfunction. PM&R. 2011;3:1005–12.

    Article  Google Scholar 

  80. Guest NS, Barr SI. Cognitive dietary restraint is associated with stress fractures in women runners. Int J Sport Nutr Exerc Metab. 2005;15:147–59.

    PubMed  Google Scholar 

  81. Goolsby MA, Nattiv A, Casper J. Predictors for stress fracture incidence and rate in male and female collegiate track athletes: a prospective analysis. Clin J Sports Med. 2008;18:188.

    Google Scholar 

  82. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16:209–16.

    Article  PubMed  CAS  Google Scholar 

  83. Kelsey JL, Bachrach LK, Procter-Gray E, Nieves J, Greendale GA, Sowers M, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39:1457–63.

    Article  PubMed  Google Scholar 

  84. Bennell KL, Malcolm SA, Thomas SA, Ebeling PR, McCrory PR, Wark JD, et al. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin J Sport Med. 1995;5:229–35.

    Article  PubMed  CAS  Google Scholar 

  85. Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29:304–10.

    PubMed  CAS  Google Scholar 

  86. Loud KJ, Micheli LJ, Bristol S, Austin SB, Gordon CM. Family history predicts stress fracture in active female adolescents. Pediatrics. 2007;120:e364–72.

    Article  PubMed  Google Scholar 

  87. Lloyd T, Triantafyllou SJ, Baker ER, Houts PS, Whiteside JA, Kalenak A, et al. Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sports Exerc. 1986;18:374–9.

    PubMed  CAS  Google Scholar 

  88. Kadel NJ, Teitz CC, Kronmal RA. Stress fractures in ballet dancers. Am J Sports Med. 1992;20:445–9.

    Article  PubMed  CAS  Google Scholar 

  89. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Bruckner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24:810–8.

    Article  PubMed  CAS  Google Scholar 

  90. Frusztajer NT, Dhuper S, Warren MP, Brooks-Gunn J, Fox RP. Nutrition and the incidence of stress fractures in ballet dancers. Am J Clin Nutr. 1990;51:779–83.

    PubMed  CAS  Google Scholar 

  91. Popp KL, Hughes JM, Smock AJ, Novotny SA, Stovitz SD, Koehler SM, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41:2145–50.

    Article  PubMed  Google Scholar 

  92. Marx RG, Saint-Phard D, Callahan LR, Chu J, Hannafin JA. Stress fracture sites related to underlying bone health in athletic females. Clin J Sport Med. 2001;11:73–6.

    Article  PubMed  CAS  Google Scholar 

  93. • Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45:243–52. Among 163 female adolescent athletes participating in 8 interscholastic sports, 61 (37.4%) incurred 90 musculoskeletal injuries during the prospective study period. Significant predictors of injury included low BMD, disordered eating, and oligo/amenorrhea.

    Article  PubMed  Google Scholar 

  94. Thein-Nissenbaum JM, Rauh MJ, Carr KE, Loud KJ, McGuine TA. Associations between disordered eating, menstrual dysfunction, and musculoskeletal injury among high school athletes. J Orthop Sports Phys Ther. 2011;41:60–9.

    PubMed  Google Scholar 

  95. Tenforde AS, Sayres LC, McCurdy ML, Collado H, Sainani KL, Fredericson M. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PMR. 2011;3:125–31.

    Google Scholar 

  96. Okamoto S, Arai Y, Hara K, Tsuzihara T, Kubo T. A displaced stress fracture of the femoral neck in an adolescent female distance runner with female athlete triad: a case report. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:6.

    Article  PubMed  Google Scholar 

  97. Goolsby MA, Barrack MT, Nattiv A. A displaced femoral neck stress fracture in an amenorrheic adolescent female runner. Sports Health. 2012;4:352–6.

    Article  PubMed  Google Scholar 

  98. Mountjoy M HM, Cruz L, Lebrun C. Female Athlete Triad Pre Participation Evaluation. Female Athlete Triad Coalition. 2008.

  99. Mencias T, Noon M, Hoch AZ. Female athlete triad screening in National Collegiate Athletic Association Division I athletes: is the preparticipation evaluation form effective? Clin J Sport Med. 2012;22:122–5.

    Article  PubMed  Google Scholar 

  100. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39:1867–82.

    Article  PubMed  Google Scholar 

  101. Ducher G, Turner AI, Kukuljan S, Pantano KJ, Carlson JL, William NI, et al. Obstacles in the optimization of bone health outcomes in the female athlete triad. Sports Med. 2011;41:587–607.

    Article  PubMed  Google Scholar 

  102. Misra M, Katzman D, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26:2430–8.

    Article  PubMed  CAS  Google Scholar 

  103. Sienkiewicz E, Magkos F, Aronis KN, Brinkoetter M, Chamberland JP, Chou S, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism. 2011;60:1211–21.

    Article  PubMed  CAS  Google Scholar 

  104. Miller SM, Kukuljan S, Turner AI, van der Pligt P, Ducher G. Energy deficiency, menstrual disturbances, and low bone mass: what do exercising Australian women know about the female athlete triad? Int J Sport Nutr Exerc Metab. 2012;22:131–8.

    PubMed  Google Scholar 

  105. Feldmann JM, Belsha JP, Eissa MA, Middleman AB. Female adolescent athletes' awareness of the connection between menstrual status and bone health. J Pediatr Adolesc Gynecol. 2011;24:311–4.

    Article  PubMed  Google Scholar 

  106. Elliot DL, Goldberg L, Moe EL, Defrancesco CA, Durham MB, McGinnis W, et al. Long-term Outcomes of the ATHENA (Athletes Targeting Healthy Exercise & Nutrition Alternatives) Program for Female High School Athletes. J Alcohol Drug Educ. 2008;52:73–92.

    PubMed  Google Scholar 

  107. Becker CB, McDaniel L, Bull S, Powell M, McIntyre K. Can we reduce eating disorder risk factors in female college athletes? A randomized exploratory investigation of 2 peer-led interventions. Body Image. 2012;9:31–42.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Michelle T. Barrack declares that she has no conflict of interest. Kathryn E. Ackerman declares that she has no conflict of interest. Jenna C. Gibbs declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle T. Barrack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrack, M.T., Ackerman, K.E. & Gibbs, J.C. Update on the female athlete triad. Curr Rev Musculoskelet Med 6, 195–204 (2013). https://doi.org/10.1007/s12178-013-9168-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-013-9168-9

Keywords

Navigation