Skip to main content
Log in

Low Energy Availability, Menstrual Dysfunction, and Low Bone Mineral Density in Individuals with a Disability: Implications for the Para Athlete Population

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Low energy availability, functional hypothalamic amenorrhea, and low bone mineral density are three interrelated conditions described in athletic women. Although described as the female athlete triad (Triad), males experience similar health concerns. The literature suggests that individuals with a disability may experience altered physiology related to these three conditions when compared with the able-bodied population. The goal of this review is to describe the unique implications of low energy availability, low bone mineral density, and, in females, menstrual dysfunction in individuals with a disability and their potential impact on the para athlete population. A literature review was performed linking search terms related to the three conditions with six disability categories that are most represented in para sport. Few articles were found that directly pertained to athletes, therefore, the review additionally characterizes literature found in a non-athlete population. Review of the available literature in athletes suggests that both male and female athletes with spinal cord injury demonstrate risk factors for low energy availability. Bone mineral density may also show improvements for wheelchair athletes or athletes with hemiplegic cerebral palsy when compared with a disabled non-athlete population. However, the prevalence of the three conditions and implications on the health of para athletes is largely unknown and represents a key gap in the sports medicine literature. As participation in para sport continues to increase, further research is needed to understand the impact of these three interrelated health concerns for athletes with a disability, accompanied by educational initiatives targeting athletes, coaches, and health professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeager KK, Agnostini R, Nattiv A, et al. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.

    Article  CAS  PubMed  Google Scholar 

  2. Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  3. De Souza MJ, Nattiv A, Joy E, et al. 2014 Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289

  4. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  5. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    Article  CAS  PubMed  Google Scholar 

  6. Ihle R, Louck AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.

    Article  PubMed  Google Scholar 

  7. Tenforde AS, Barrack MT, Nattiv A, et al. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46(2):171–82.

    Article  PubMed  Google Scholar 

  8. Blauwet CA. The paralympic female athlete. In: Mountjoy M, editor. Handbook of sports medicine and science. West Sussex: John Wiley & Sons, Inc.; 2014. p. 120–8.

    Google Scholar 

  9. Willick S, Webborn N. Medicine. In: Vanlandewijck Y, Thompson W, editors. The paralympic athlete: handbook of sports medicine and science. West Sussex: Wiley Blackwell; 2010. p. 74–88.

    Chapter  Google Scholar 

  10. London 2012 Facts and Figures. 2013. http://www.olympic.org/Documents/Reference_documents_Factsheets/London_2012_Facts_and_Figures-eng.pdf. Accessed 22 Dec 2015

  11. Gold JR, Gold MM. Access for all: the rise of the Paralympic Games. J R Soc Promot Health. 2007;127(3):133–41.

    Article  PubMed  Google Scholar 

  12. Webborn N, Van de Vliet P. Paralympic medicine. Lancet. 2012;380(9836):65–71.

    Article  PubMed  Google Scholar 

  13. Krempien JL, Barr SI. Risk of nutrient inadequacies in elite Canadian athletes with spinal cord injury. Int J Sport Nutr Exerc Metab. 2011;21(5):417–25.

    Article  CAS  PubMed  Google Scholar 

  14. Krempien JL, Barr SI. Eating attitudes and behaviours in elite Canadian athletes with a spinal cord injury. Eat Behav. 2012;13(1):36–41.

    Article  PubMed  Google Scholar 

  15. Miyahara K, Wang DH, Mori K, et al. Effect of sports activity on bone mineral density in wheelchair athletes. J Bone Miner Metab. 2008;26(1):101–6.

    Article  PubMed  Google Scholar 

  16. Goktepe AS, Yilmaz B, Alaca R, et al. Bone density loss after spinal cord injury: elite paraplegic basketball players vs. paraplegic sedentary persons. Am J Phys Med Rehabil. 2004;83(4):279–83.

    Article  PubMed  Google Scholar 

  17. Price M. Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med. 2010;40(8):681–96.

    Article  PubMed  Google Scholar 

  18. Runciman P, Tucker R, Ferreira S, et al. Site-specific bone mineral density is unaltered despite differences in fat-free soft tissue mass between affected and nonaffected sides in hemiplegic paralympic athletes with cerebral palsy: preliminary findings. Am J Phys Med Rehabil. 2016;95(10):771–8.

    Article  PubMed  Google Scholar 

  19. Loucks AB. Low energy availability in the marathon and other endurance sports. Sports Med. 2007;37(4–5):348–52.

    Article  PubMed  Google Scholar 

  20. 2015 ISCD Official Positions-Adult. 2015. http://www.iscd.org/official-positions/2015-iscd-official-positions-adult/. Accessed 4 Feb 2016

  21. Goosey-Tolfrey V, Krempien J, Price M. Spinal Cord Injuries. In: Broad E, editor. Sports Nutrition for Paralympic Athletes. Abingdon: Taylor & Francis Group; 2014. p. 67–90.

    Chapter  Google Scholar 

  22. Mollinger LA, Spurr GB, el Ghatit AZ, et al. Daily energy expenditure and basal metabolic rates of patients with spinal cord injury. Arch Phys Med Rehabil. 1985;66(7):420–6.

    CAS  PubMed  Google Scholar 

  23. Glaser RM. Physiologic aspects of spinal cord injury and functional neuromuscular stimulation. Cent Nerv Syst Trauma. 1986;3(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  24. Krassioukov A, West C. The role of autonomic function on sport performance in athletes with spinal cord injury. PM R. 2014;6(8 Suppl):S58–65.

    Article  PubMed  Google Scholar 

  25. Hassler J. The influence of ankle-foot orthoses on gait and energy expenditure in spina bifida. Pediatr Phys Ther. 2001;13(3):146–7.

    CAS  PubMed  Google Scholar 

  26. Evans EP, Tew B. The energy expenditure of spina bifida children during walking and wheelchair ambulation. Z Kinderchir. 1981;34(4):425–7.

    CAS  PubMed  Google Scholar 

  27. Gross SM, Ireys HT, Kinsman SL. Young women with physical disabilities: risk factors for symptoms of eating disorders. J Dev Behav Pediatr. 2000;21(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  28. Silber TJ, Shaer C, Atkins D. Eating disorders in adolescents and young women with spina bifida. Int J Eat Disord. 1999;25(4):457–61.

    Article  CAS  PubMed  Google Scholar 

  29. Jonsson AC, Lindgren I, Norrving B, et al. Weight loss after stroke: a population-based study from the Lund Stroke Register. Stroke. 2008;39(3):918–23.

    Article  PubMed  Google Scholar 

  30. Crosland J, Boyd C. Cerebral palsy and acquired brain injuries. In: Broad E, editor. Sports nutrition for paralympic athletes. Abingdon: Taylor & Francis Group; 2014. p. 91–105.

    Chapter  Google Scholar 

  31. Johnson RK, Hildreth HG, Contompasis SH, et al. Total energy expenditure in adults with cerebral palsy as assessed by doubly labeled water. J Am Diet Assoc. 1997;97(9):966–70.

    Article  CAS  PubMed  Google Scholar 

  32. Castano B, Capdevila E. Eating disorders in patients with traumatic brain injury: a report of four cases. NeuroRehabilitation. 2010;27(2):113–6.

    PubMed  Google Scholar 

  33. Crenn P, Hamchaoui S, Bourget-Massari A, et al. Changes in weight after traumatic brain injury in adult patients: a longitudinal study. Clin Nutr. 2014;33(2):348–53.

    Article  PubMed  Google Scholar 

  34. Bragaru M, Dekker R, Geertzen JH. Sport prostheses and prosthetic adaptations for the upper and lower limb amputees: an overview of peer reviewed literature. Prosthet Orthot Int. 2012;36(3):290–6.

    Article  PubMed  Google Scholar 

  35. Goosey-Tolfrey V, Sutton L. Body composition in disease and disability. In: Stewart AD, Sutton L, editors. Body composition in sport, exercise, and health. Abingdon: Routledge; 2012. p. 166–86.

    Google Scholar 

  36. Blumentritt S, Schmalz T, Jarasch R. Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation. Orthopade. 2001;30(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalez EG, Corcoran PJ, Reyes RL. Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil. 1974;55(3):111–9.

    CAS  PubMed  Google Scholar 

  38. Meyer N, Edwards S. Amputees. In: Broad E, editor. Sports nutrition for paralympic athletes. Abingdon: Taylor & Francis Group; 2014. p. 107–26.

    Chapter  Google Scholar 

  39. Broad E. Les Autres. In: Broad E, editor. Sports nutrition for paralympic athletes. Abingdon: Taylor & Francis Group; 2014. p. 127–34.

    Chapter  Google Scholar 

  40. Weaver DS, Owen GM. Nutrition and short stature. Postgrad Med. 1977;62(6):93–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hunter AG, Hecht JT, Scott CI Jr. Standard weight for height curves in achondroplasia. Am J Med Genet. 1996;62(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  42. Ashikali EM, Dittmar H. Body image and restrained eating in blind and sighted women: a preliminary study. Body Image. 2010;7(2):172–5.

    Article  PubMed  Google Scholar 

  43. Baker D, Sivyer R, Towell T. Body image dissatisfaction and eating attitudes in visually impaired women. Int J Eat Disord. 1998;24(3):319–22.

    Article  CAS  PubMed  Google Scholar 

  44. Simeunovic Ostojic M, Hansen AM. Sociocultural factors in the development of bulimia nervosa in a blind woman: a case report. Int J Eat Disord. 2013;46(3):284–8.

    Article  PubMed  Google Scholar 

  45. Kocourkova J, Soltysova M, Mohaplova M, et al. Anorexia nervosa in a blind girl. Neuro Endocrinol Lett. 2011;32(6):748–50.

    PubMed  Google Scholar 

  46. Fernandez-Aranda F, Crespo JM, Jimenez-Murcia S, et al. Blindness and bulimia nervosa: a description of a case report and its treatment. Int J Eat Disord. 2006;39(3):263–5.

    Article  PubMed  Google Scholar 

  47. Sharp CW. Anorexia nervosa and depression in a woman blind since the age of nine months. Can J Psychiatry. 1993;38(7):469–71.

    Article  CAS  PubMed  Google Scholar 

  48. Huang TS, Wang YH, Lai JS, et al. The hypothalamus-pituitary-ovary and hypothalamus-pituitary-thyroid axes in spinal cord-injured women. Metabolism. 1996;45(6):718–22.

    Article  CAS  PubMed  Google Scholar 

  49. Anderson CJ, Mulcahey MJ, Vogel LC. Menstruation and pediatric spinal cord injury. J Spinal Cord Med. 1997;20(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  50. Charlifue SW, Gerhart KA, Menter RR, et al. Sexual issues of women with spinal cord injuries. Paraplegia. 1992;30(3):192–9.

    Article  CAS  PubMed  Google Scholar 

  51. Bughi S, Shaw SJ, Mahmood G, et al. Amenorrhea, pregnancy, and pregnancy outcomes in women following spinal cord injury: a retrospective cross-sectional study. Endocr Pract. 2008;14(4):437–41.

    Article  PubMed  Google Scholar 

  52. Schwellnus M, Derman W, Jordaan E, et al. Factors associated with illness in athletes participating in the London 2012 Paralympic Games: a prospective cohort study involving 49,910 athlete-days. Br J Sports Med. 2013;47(7):433–40.

    Article  PubMed  Google Scholar 

  53. Could you be an athlete? Olympics 2012 by age, weight and height. https://www.theguardian.com/sport/datablog/2012/aug/07/olympics-2012-athletes-age-weight-height. Accessed 7 Nov 2016.

  54. Colantonio A, Mar W, Escobar M, et al. Women’s health outcomes after traumatic brain injury. J Womens Health (Larchmt). 2010;19(6):1109–16.

    Article  Google Scholar 

  55. Ripley DL, Harrison-Felix C, Sendroy-Terrill M, et al. The impact of female reproductive function on outcomes after traumatic brain injury. Arch Phys Med Rehabil. 2008;89(6):1090–6.

    Article  PubMed  Google Scholar 

  56. Burke LM, Kalpakjian CZ, Smith YR, et al. Gynecologic issues of adolescents with Down syndrome, autism, and cerebral palsy. J Pediatr Adolesc Gynecol. 2010;23(1):11–5.

    Article  PubMed  Google Scholar 

  57. Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006;17(2):180–92.

    Article  PubMed  Google Scholar 

  58. Slade JM, Bickel CS, Dudley GA. The effect of a repeat bout of exercise on muscle injury in persons with spinal cord injury. Eur J Appl Physiol. 2004;92(3):363–6.

    Article  CAS  PubMed  Google Scholar 

  59. Vestergaard P, Krogh K, Rejnmark L, et al. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord. 1998;36(11):790–6.

    Article  CAS  PubMed  Google Scholar 

  60. Dauty M, Perrouin Verbe B, Maugars Y, et al. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone. 2000;27(2):305–9.

    Article  CAS  PubMed  Google Scholar 

  61. Frotzler A, Cheikh-Sarraf B, Portehrani M, et al. Long-bone fractures in persons with spinal cord injury. Spinal Cord. 2015;53(9):701–4.

    Article  CAS  PubMed  Google Scholar 

  62. Zehnder Y, Luthi M, Michel D, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15(3):180–9.

    Article  PubMed  Google Scholar 

  63. Gifre L, Vidal J, Carrasco JL, et al. Risk factors for the development of osteoporosis after spinal cord injury. A 12-month follow-up study. Osteoporos Int. 2015;26(9):2273–80.

    Article  CAS  PubMed  Google Scholar 

  64. Szollar SM, Martin EM, Sartoris DJ, et al. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  65. Garland DE, Stewart CA, Adkins RH, et al. Osteoporosis after spinal cord injury. J Orthop Res. 1992;10(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  66. Demirel G, Yilmaz H, Paker N, et al. Osteoporosis after spinal cord injury. Spinal Cord. 1998;36(12):822–5.

    Article  CAS  PubMed  Google Scholar 

  67. Coupaud S, McLean AN, Purcell M, et al. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury. Bone. 2015;74:69–75.

    Article  PubMed  Google Scholar 

  68. Frotzler A, Berger M, Knecht H, et al. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Bone. 2008;43(3):549–55.

    Article  PubMed  Google Scholar 

  69. Frey-Rindova P, de Bruin ED, Stussi E, et al. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord. 2000;38(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  70. Martinelli V, Dell’Atti C, Ausili E, et al. Risk of fracture prevention in spina bifida patients: correlation between bone mineral density, vitamin D, and electrolyte values. Childs Nerv Syst. 2015;31(8):1361–5.

    Article  CAS  PubMed  Google Scholar 

  71. Marreiros H, Loff C, Calado E. Osteoporosis in paediatric patients with spina bifida. J Spinal Cord Med. 2012;35(1):9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Szalay EA, Cheema A. Children with spina bifida are at risk for low bone density. Clin Orthop Relat Res. 2011;469(5):1253–7.

    Article  PubMed  Google Scholar 

  73. Marreiros H, Monteiro L, Loff C, et al. Fractures in children and adolescents with spina bifida: the experience of a Portuguese tertiary-care hospital. Dev Med Child Neurol. 2010;52(8):754–9.

    Article  PubMed  Google Scholar 

  74. Henderson RC, Lin PP, Greene WB. Bone-mineral density in children and adolescents who have spastic cerebral palsy. J Bone Joint Surg Am. 1995;77(11):1671–81.

    Article  CAS  PubMed  Google Scholar 

  75. Finbraten AK, Syversen U, Skranes J, et al. Bone mineral density and vitamin D status in ambulatory and non-ambulatory children with cerebral palsy. Osteoporos Int. 2015;26(1):141–50.

    Article  PubMed  Google Scholar 

  76. Fowler EG, Rao S, Nattiv A, et al. Bone density in premenopausal women and men under 50 years of age with cerebral palsy. Arch Phys Med Rehabil. 2015;96(7):1304–9.

    Article  PubMed  Google Scholar 

  77. Grossberg R, Blackford MG, Kecskemethy HH, et al. Longitudinal assessment of bone growth and development in a facility-based population of young adults with cerebral palsy. Dev Med Child Neurol. 2015;57(11):1064–9.

    Article  PubMed  Google Scholar 

  78. Kim W, Lee SJ, Yoon YK, et al. Adults with spastic cerebral palsy have lower bone mass than those with dyskinetic cerebral palsy. Bone. 2015;71:89–93.

    Article  PubMed  Google Scholar 

  79. Henderson RC, Kairalla JA, Barrington JW, et al. Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr. 2005;146(6):769–75.

    Article  PubMed  Google Scholar 

  80. Henderson RC, Lark RK, Gurka MJ, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1 Pt 1):e5.

    Article  PubMed  Google Scholar 

  81. Henderson R. Bone density and size in ambulatory children with cerebral palsy. Dev Med Child Neurol. 2011;53(2):102–3.

    Article  PubMed  Google Scholar 

  82. Mergler S, Evenhuis HM, Boot AM, et al. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51(10):773–8.

    Article  PubMed  Google Scholar 

  83. Presedo A, Dabney KW, Miller F. Fractures in patients with cerebral palsy. J Pediatr Orthop. 2007;27(2):147–53.

    Article  PubMed  Google Scholar 

  84. Leet AI, Mesfin A, Pichard C, et al. Fractures in children with cerebral palsy. J Pediatr Orthop. 2006;26(5):624–7.

    Article  PubMed  Google Scholar 

  85. Sherk VD, Bemben MG, Bemben DA. BMD and bone geometry in transtibial and transfemoral amputees. J Bone Miner Res. 2008;23(9):1449–57.

    Article  PubMed  Google Scholar 

  86. Royer T, Koenig M. Joint loading and bone mineral density in persons with unilateral, trans-tibial amputation. Clin Biomech (Bristol, Avon). 2005;20(10):1119–25.

    Article  Google Scholar 

  87. Matsushita M, Kitoh H, Mishima K, et al. Low bone mineral density in achondroplasia and hypochondroplasia. Pediatr Int. 2016;58(8):705–8.

    Article  CAS  PubMed  Google Scholar 

  88. Arita ES, Pippa MG, Marcucci M, et al. Assessment of osteoporotic alterations in achondroplastic patients: a case series. Clin Rheumatol. 2013;32(3):399–402.

    Article  PubMed  Google Scholar 

  89. Tasoglu O, Sahin Onat S, Yenigun D, et al. Low bone density in achondroplasia. Clin Rheumatol. 2014;33(5):733–5.

    Article  PubMed  Google Scholar 

  90. Dargent-Molina P, Favier F, Grandjean H, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet. 1996;348(9021):145–9.

    Article  CAS  PubMed  Google Scholar 

  91. Felson DT, Anderson JJ, Hannan MT, et al. Impaired vision and hip fracture. The Framingham Study. J Am Geriatr Soc. 1989;37(6):495–500.

    Article  CAS  PubMed  Google Scholar 

  92. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332(12):767–73.

    Article  CAS  PubMed  Google Scholar 

  93. Uusi-Rasi K, Sievanen H, Rinne M, et al. Bone mineral density of visually handicapped women. Clin Physiol. 2001;21(4):498–503.

    Article  CAS  PubMed  Google Scholar 

  94. Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011;3(9):861–7.

    Article  PubMed  Google Scholar 

  95. Hoch AZ, Pajewski NM, Moraski L, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19(5):421–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Athletes With High Support Needs Committee. 2014. https://www.paralympic.org/the-ipc/committees/athletes-with-high-support-needs. Accessed 27 June 2016.

Download references

Acknowledgements

The authors wish to extend their most sincere thanks to Dr. Aurelia Nattiv for her expert review of this manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheri A. Blauwet.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Cheri Blauwet, Emily Brook, Adam Tenforde, Elizabeth Broad, Caroline Hu, Eliza Abdu-Glass and Elizabeth Matzkin have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blauwet, C.A., Brook, E.M., Tenforde, A.S. et al. Low Energy Availability, Menstrual Dysfunction, and Low Bone Mineral Density in Individuals with a Disability: Implications for the Para Athlete Population. Sports Med 47, 1697–1708 (2017). https://doi.org/10.1007/s40279-017-0696-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0696-0

Keywords

Navigation