Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The structural and mechanical complexity of cell-growth control

Abstract

Tight control of cell proliferation is required to ensure normal tissue patterning and prevent cancer formation. The analysis of cultured cells has led to an explosion in our understanding of the molecules that trigger growth and mediate cell-cycle progression. However, the mechanism by which the local growth differentials that drive morphogenesis are established and maintained still remains unknown. Here we review recent work that reveals the importance of cell binding to the extracellular matrix, and associated changes in cell shape and cytoskeletal tension, to the spatial control of cell-cycle progression. These findings change the paradigm of cell-growth control, by placing our understanding of molecular signalling cascades in the context of the structural and mechanical complexity of living tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How local growth differentials drive normal tissue patterning during epithelial morphogenesis and angiogenesis.
Figure 2: Control of cell shape independently of the total cell–ECM contact area, studied using micropatterned adhesive substrates.
Figure 3: A pseudocolour image showing establishment of local growth differentials in the presence of soluble mitogens in vitro.
Figure 4: Working model for regulation of G1 progression by growth factors, adhesion to ECM and cell distortion.
Figure 5: Model for tension-driven tissue remodelling during normal morphogenesis and its deregulation during tumour formation.

Similar content being viewed by others

References

  1. Ausprunk, D. H. & Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65 (1997).

    Google Scholar 

  2. Bernfield, M. R. & Banerjee, S. D. in Biology and Chemistry of Basement Membranes (ed. Kefalides, N.) 137–148 (Academic, New York, 1978).

    Google Scholar 

  3. Metzger R. J. & Krasnow, M. A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999).

    CAS  PubMed  Google Scholar 

  4. Clark, E. R. & Clark, E. L. Microsopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat. 64, 251–301 (1938).

    Google Scholar 

  5. Ingber, D. E., Madri, J. A. & Jamieson, J. D. Role of basal lamina in neoplastic disorganization of tissue architecture. Proc. Natl Acad. Sci. USA 78, 3901–3905 (1981).

    CAS  PubMed  Google Scholar 

  6. Ingber, D. E. & Jamieson, J. D. in Gene Expression During Normal and Malignant Differentiation (eds Anderson, L. C., Gahmberg, C. G. & Ekblom, P.) 13–32 (Academic, Orlando, 1985).

    Google Scholar 

  7. Clark, W. H. Jr The nature of cancer: morphogenesis and progressive (self)-disorganization in neoplastic development and progression. Acta Oncol. 34, 3–21 (1995).

    PubMed  Google Scholar 

  8. Lochter, A. et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 139, 1861–1872 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, C. C. Signaling by integrin receptors.Oncogene 17, 1365–1373 (1998).

    CAS  PubMed  Google Scholar 

  10. Lavoie, J. N., L’Allemain, G., Brunet, A., Müller, R. & Pouysségur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996).

    CAS  PubMed  Google Scholar 

  11. Weber, J. D., Hu, W., Jefcoat, S. C. Jr, Raben, D. M. & Baldassare, J. J. Ras-stimulated extracellular signal-regulated kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J. Biol. Chem. 272, 32966–32971 (1997).

    CAS  PubMed  Google Scholar 

  12. Cheng, M., Sexl, V., Sherr, C. J. & Roussel, M. F. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl Acad. Sci. USA 95, 1091–1096 (1998).

    CAS  PubMed  Google Scholar 

  13. Vojtek, A. B. & Der, C. J. Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19925–19928 (1998).

    CAS  PubMed  Google Scholar 

  14. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    CAS  PubMed  Google Scholar 

  15. Morino, N. et al. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J. Biol. Chem. 270, 269–273 (1995).

    CAS  PubMed  Google Scholar 

  16. Schlaepfer, D. D. & Hunter, T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8, 151–157 (1998).

    CAS  PubMed  Google Scholar 

  17. Chen, Q., Lin, T. H., Der, C. J. & Juliano, R. L. Integrin-mediated activation of MEK and mitogen-activated protein kinase is independent of Ras. J. Biol. Chem. 271, 18122–18127 (1996).

    CAS  PubMed  Google Scholar 

  18. Clark, E. A. & Hynes, R. O. Ras activation is necessary for integrin-mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J Biol. Chem. 271, 14814–14818 (1996)

    CAS  PubMed  Google Scholar 

  19. Wary, K. K., Manieri, F., lsakoff, S. J., Marcantonio, E. E. & Giancotti, F. G. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 88, 573–575 (1997).

    Google Scholar 

  20. Lin, T. H., Chen, Q., Howe, A. & Juliano, R. L. Cell anchorage permits efficient signal transduction between ras and its downstream kinases. J. Biol. Chem. 272, 8849–8852 (1997).

    CAS  PubMed  Google Scholar 

  21. Renshaw, M. W., Ren, X. D. & Schwartz, M. A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592–5599 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Short, S. M., Talbott, G. A. & Juliano, R. L. Integrin-mediated signaling events in human endothelial cells. Mol. Biol.Cell 9, 1969–1980 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meloche, S., Pages, G. & Pouyssegur, J. Functional expression and growth factor activation of an epitope-tagged p44 mitogen-activated protein kinase, p44mapk. Mol. Biol. Cell 3, 63–71 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu, X. & Assoian, R. K. Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. Mol. Biol. Cell 6, 273–282 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weber, J. D., Raben, D. M., Phillips, P. J. & Baldassare, J. J. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J. 326, 61–68 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Gall, M., Grall, D., Chambard, J. C., Pouyssegur, J. & Van Obberghen-Schilling, E. An anchorage-dependent signal distinct from p42/44 MAP kinase activation is required for cell cycle progression. Oncogene 17, 1271–1277 (1998).

    CAS  PubMed  Google Scholar 

  27. Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995).

    CAS  PubMed  Google Scholar 

  28. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  29. Guadagno, T. M. & Assoian, R. K. G1/S control of anchorage-independent growth in the fibroblast cell cycle. J. Cell Biol. 115, 1419–1425 (1991).

    CAS  PubMed  Google Scholar 

  30. Assoian, R. K. & Zhu, X. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9, 93–98 (1997).

    CAS  PubMed  Google Scholar 

  31. Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M. & Assoian, R. K. Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J. Cell Biol. 133, 391–403 (1996).

    CAS  PubMed  Google Scholar 

  32. Fang, F., Orend, G., Watanabe, N., Hunter, T. & Ruoslahti, E. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271, 499–502 (1996).

    CAS  PubMed  Google Scholar 

  33. Schulze, A. et al. Anchorage-dependent transcription of the cyclin A gene. Mol. Cell Biol. 16, 4632–4638 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuzumaki, T. & Ishikawa, K. Loss of cell adhesion to substratum up-regulates p21Cip1/WAF1 expression in BALB/c 3T3 fibroblasts. Biochem. Biophys. Res. Commun. 238, 169–172 (1997).

    CAS  PubMed  Google Scholar 

  35. Resnitzky, D. Ectopic expression of cyclin D1 but not cyclin E induces anchorage-independent cell cycle progression. Mol. Cell Biol. 17, 5640–5647 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Radeva, G. et al. Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. J.Biol. Chem. 272, 13937–13944 (1997).

    CAS  PubMed  Google Scholar 

  37. Kang, J. S. & Krauss, R. S. Ras induces anchorage-independent growth by subverting multiple adhesion-regulated cell cycle events. Mol. Cell. Biol. 16, 3370–3380 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guadagno, T. M., Ohtsubo, M., Roberts, J. M. & Assoian, R. K. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 262, 1572–1575 (1993).

    CAS  PubMed  Google Scholar 

  39. Wicha, M. S., Liotta, L. A., Vonderhaar, B. K. & Kidwell, W. R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev. Biol. 80, 253–266 (1980).

    CAS  PubMed  Google Scholar 

  40. Ingber, D. E., Madri, J. A. & Folkman, J. A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119, 1768–1775 (1986).

    CAS  PubMed  Google Scholar 

  41. Adams, J. C. & Watt, F. M. Regulation of development and differentiation by the extracellular matrix. Development 117, 1183–1198 (1993).

    CAS  PubMed  Google Scholar 

  42. Schwartz, M. A., Lechene, C. & Ingber, D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc. Natl Acad. Sci. USA 88, 7849–7853 (1991).

    CAS  PubMed  Google Scholar 

  43. Plopper, G. E, McNamee, H. P., Dike, L. E., Bojanowski, K. & Ingber, D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol.Cell 6, 1349–1365 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131, 791–805 (1995).

    CAS  PubMed  Google Scholar 

  45. Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl Acad. Sci. USA 87, 3579–3583 (1990).

    CAS  PubMed  Google Scholar 

  46. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  PubMed  Google Scholar 

  47. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978).

    CAS  PubMed  Google Scholar 

  48. Wittelsberger, S. C., Kleene, K. & Penman, S. Progressive loss of shape-responsive metabolic controls in cells with increasingly transformed phenotype. Cell 24, 859–866 (1981).

    CAS  PubMed  Google Scholar 

  49. Ingber, D. E., Madri, J. A. & Folkman, J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev. Biol. 23, 387–394 (1987).

    CAS  PubMed  Google Scholar 

  50. Junker, J. L. & Heine, U. I. Effect of adhesion factors fibronectin, laminin, and type IV collagen on spreading and growth of transformed and control rat liver epithelial cells. Cancer Res. 47, 3802–3807 (1987).

    CAS  PubMed  Google Scholar 

  51. Vitale, M. et al. Integrin binding to immobilized collagen and fibronectin stimulates the proliferation of human thyroid cells in culture. Endocrinology 138, 1642–1648 (1997).

    CAS  PubMed  Google Scholar 

  52. Koyama, H., Raines, E. W., Bornfeldt, K. E., Roberts, J. M. & Ross, R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87, 1069–1078 (1996).

    CAS  PubMed  Google Scholar 

  53. Manabe, R., Oh-e, N. & Sekiguchi, K. Alternatively spliced EDA segment regulates fibronectin-dependent cell cycle progression and mitogenic signal transduction. J. Biol.Chem. 274, 5919–5924 (1999).

    CAS  PubMed  Google Scholar 

  54. Zanetti, N. C., Dress, V. M. & Solursh, M. Comparison between ectoderm-conditioned medium and fibronectin in their effects on chondrogenesis by limb bud mesenchymal cells. Dev . Biol. 139, 383–395 (1990).

    CAS  PubMed  Google Scholar 

  55. Mooney, D. J. et al. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell Phys. 151, 497–505 (1992).

    CAS  Google Scholar 

  56. Ingber, D. E. et al. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J. Cell Biol. 110, 1803–1811 (1990).

    CAS  PubMed  Google Scholar 

  57. Hansen, L. K., Mooney, D. J., Vacanti, J. P. & Ingber, D. E. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol. Biol. Cell 5, 967–975 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, S., Chen, S. C., Whitesides, G. M. & Ingber, D. E. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9, 3179–3193 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Iwig, M. et al. Growth regulation by cell shape alteration and organization of the cytoskeleton. Eur. J. Cell Biol. 67, 145–157 (1995).

    CAS  PubMed  Google Scholar 

  60. Ingber, D. E., Prusty, D., Sun, Z., Betensky, H. & Wang, N. Cell shape, cytoskeletal mechanics and cell cycle control in angiogenesis. J. Biomech. 28, 1471–1484 (1995).

    CAS  PubMed  Google Scholar 

  61. Bohmer, R. M., Scharf, E. & Assoian, R. K. Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol. Biol. Cell 7, 101–111 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghosh, P. M. et al. Role of RhoA activation in the growth and morphology of a murine prostate cell line. Oncogene 18, 4120–4130 (1999).

    CAS  PubMed  Google Scholar 

  63. Ingber, D. E. & Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58, 803–805 (1989).

    CAS  PubMed  Google Scholar 

  64. Mochitate, K., Pawelek, P. & Grinnell, F. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp.Cell Res. 193, 198–207 (1991).

    CAS  PubMed  Google Scholar 

  65. Cai, S. et al. Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation. Am. J. Phys. 275, C1349–C1356 (1998).

    CAS  Google Scholar 

  66. St Croix, B. et al. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP1). J. Cell. Biol. 142, 557–571 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Levenberg, S., Yarden, A., Kam, Z. & Geiger, B. p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 18, 869–876 (1999).

    CAS  PubMed  Google Scholar 

  68. Yang, J. J., Kang, J. S. & Krauss, R. S. Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol. Cell Biol. 18, 2586–2595 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Aktas, H., Cai, H. & Cooper, G. M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell Biol. 17, 3850–3857 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Taylor, S. J. & Shalloway, D. Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621–1627 (1996).

    CAS  PubMed  Google Scholar 

  71. Takuwa, N. & Takuwa, Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblast. Mol. Cell Biol. 17, 5348–5358 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    CAS  PubMed  Google Scholar 

  73. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    CAS  PubMed  Google Scholar 

  74. Olson, M. F., Paterson, H. F. & Marshall, C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394, 295–299 (1998).

    CAS  PubMed  Google Scholar 

  75. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    CAS  PubMed  Google Scholar 

  76. Qiu, R. G., Chen, J., McCormick, F. & Symons, M. A role for Rho in Ras transformation. Proc. Natl Acad. Sci. USA 92, 11781–11785 (1995).

    CAS  PubMed  Google Scholar 

  77. Noguchi, Y. et al. Newly synthesized Rho A, not Ras, is isoprenylated and translocated to membranes coincident with progression of the G1 to S phase of growth-stimulated rat FRTL-5 cells. J. Biol. Chem. 273, 3649–3653 (1998).

    CAS  PubMed  Google Scholar 

  78. Hu, W., Bellone, C. J. & Baldassare, J. J. RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity. J. Biol. Chem. 274, 3396–3401 (1999).

    CAS  PubMed  Google Scholar 

  79. Schwartz, M. A, Toksoz, D. & Khosravi-Far, R. Transformation by Rho exchange factor oncogenes is mediated by activation of an integrin-dependent pathway. EMBO J. 15, 6525–6530 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hirai, A. et al. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J. Biol. Chem. 272, 13–16 (1997).

    CAS  PubMed  Google Scholar 

  81. Yano, Y., Saito, Y., Narumiya, S. & Sumpio, B. E. Involvement of rho p21 in cyclic strain-induced tyrosine phosphorylation of focal adhesion kinase(pp125FAK), morphological changes and migration of endothelial cells. Biochem. Biophys. Res. Commun. 224, 508–515 (1996).

    CAS  PubMed  Google Scholar 

  82. Squier, C. A. The stretching of mouse skin in vivo: effect on epidermal proliferation and thickness. J. Invest. Dermatol. 74, 68–71 (1980).

    CAS  PubMed  Google Scholar 

  83. Van Essen, D. C . A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    CAS  PubMed  Google Scholar 

  84. Nogawa, H., Morita, K. & Cardoso, W. V. Bud formation precedes the appearance of differential cell proliferation during branching morphogenesis of mouse lung epithelium in vitro. Dev. Dyn. 213, 228–235 (1998).

    CAS  PubMed  Google Scholar 

  85. Goldin, G. V., Hindman, H. M. & Wessells, N. K. The role of cell proliferation and cellular shape change in branching morphogenesis of the embryonic mouse lung: analysis using aphidicolin and cytochalasins. J. Exp. Zool. 232, 287–296 (1984).

    CAS  PubMed  Google Scholar 

  86. Mollard, R. & Dziadek, M. A correlation between epithelial proliferation rates, basement membrane component localization patterns, and morphogenetic potential in the embryonic mouse lung. Am. J. Respir. Cell Mol. Biol. 19, 71–82 (1998).

    CAS  PubMed  Google Scholar 

  87. Ash, J. F., Spooner, B. S. & Wessells, N. K. Effects of papaverine and calcium-free medium on salivary gland morphogenesis. Dev. Biol. 33, 463–469 (1973).

    CAS  PubMed  Google Scholar 

  88. Banerjee, S. D., Cohn, R. H. & Bernfield, M. R. Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology. J. Cell. Biol. 73, 445–463 (1977).

    CAS  PubMed  Google Scholar 

  89. Nogawa, H. & Nakanishi, Y. Mechanical aspects of the mesenchymal influence on epithelial branching morphogenesis of mouse salivary gland. Development 101, 491–500 (1987).

    Google Scholar 

  90. Sakakura, T., Nishizura, Y. & Dawe, C. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 194, 1439–1441 (1976).

    CAS  PubMed  Google Scholar 

  91. Joseph, H., Gorska, A. E., Sohn, P., Moses, H. L. & Serra, R. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell 10, 1221–1234 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tosios, K. I., Kapranos, N. & Papanicolaou, S. I. Loss of basement membrane components laminin and type IV collagen parallels the progression of oral epithelial neoplasia. Histopathology 33, 261–268 (1998).

    CAS  PubMed  Google Scholar 

  93. Henning, K., Berndt, A., Katenkamp, D. & Kosmehl, H. Loss of laminin-5 in the epithelium-stroma interface: an immunohistochemical marker of malignancy in epithelial lesions of the breast. Histopathology 34, 305–309 (1999).

    CAS  PubMed  Google Scholar 

  94. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    CAS  PubMed  Google Scholar 

  95. Wang, F. et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    CAS  PubMed  Google Scholar 

  96. Thomasset, N. et al. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am. J. Pathol. 153, 457–467 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).

    CAS  PubMed  Google Scholar 

  98. Chicurel, M. E., Chen, C. S. & Ingber, D. E. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998).

    CAS  PubMed  Google Scholar 

  99. Strohman, R. C. The coming Kuhnian revolution in biology. Nature Biotechnol., 15, 194–200 (1997).

    CAS  Google Scholar 

  100. Ingber, D. The architecture of life. Sci. Am. 278, 48–57 (1998).

    CAS  PubMed  Google Scholar 

  101. Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  102. Coffey, D. S. Self-organization, complexity and chaos: the new biology for medicine. Nature Med. 4, 882–885 (1998).

    CAS  PubMed  Google Scholar 

  103. Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stamenovic, D., Fredberg, J. J., Wang, N., Butler, J. P. & Ingber, D. E. A microstructural approach to cytoskeletal mechanics based on tensegrity. J. Theor. Biol. 181, 125–136 (1996).

    CAS  PubMed  Google Scholar 

  105. Blelloch, R. & Kimble, J. Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399, 586–590 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (CA58833, CA45548 & HL57669, to D.E.I.) and by a fellowship from the Schweizerische Stiftung für Medizinisch-Biologische Stipendien (to S.H.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Ingber, D. The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1, E131–E138 (1999). https://doi.org/10.1038/13043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/13043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing