Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multifractality in human heartbeat dynamics

Abstract

There is evidence that physiological signals under healthy conditions may have a fractal temporal structure1. Here we investigate the possibility that time series generated by certain physiological control systems may be members of a special class of complex processes, termed multifractal, which require a large number of exponents to characterize their scaling properties2,3,4,5,6. We report onevidence for multifractality in a biological dynamical system, the healthy human heartbeat, and show that the multifractal character and nonlinear properties of the healthy heart rate are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualization of multifractality in the hearbeat.
Figure 2: Heartbeat time series contain densely packed, non-isolated singularities which unavoidably affect each other in the time-frequency decomposition.
Figure 3: Multifractality in healthy dynamics.
Figure 4: Discrimination method based on the multifractal formalism.
Figure 5: Nonlinearity and Fourier phases.

Similar content being viewed by others

References

  1. Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. Fractal Physiology(Oxford Univ. Press, New York, (1994).

    Book  Google Scholar 

  2. Dewey, T. G. Fractals in Molecular Biophysics(Oxford Univ. Press, Oxford, (1997).

    MATH  Google Scholar 

  3. Stanley, H. E. & Meakin, P. Multifractal phenomena in physics and chemistry. Nature 335, 405–409 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Vicsek, T. Fractal Growth Phenomena, 2nd edn (World Scientific, Singapore, (1993).

    MATH  Google Scholar 

  5. Takayasu, H. Fractals in the Physical Sciences(Manchester Univ. Press, Manchester, UK, (1997).

    MATH  Google Scholar 

  6. Stanley, H. E. in Fractals and Disordered Systems2nd edn (eds Bunde, A. & Havlin, S.) 1–68 (Springer, Berlin, (1996).

    Book  Google Scholar 

  7. Shlesinger, M. F. Fractal time and 1/f noise in complex systems. Ann. NY Acad. Sci. 504, 214–228 (1987).

    Article  ADS  Google Scholar 

  8. Malik, M. & Camm, A. J. (eds) Heart Rate Variability(Futura, Armonk, NY, (1995).

    Google Scholar 

  9. Akselrod, S.et al. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Kobayashi, M. & Musha, T. 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 29, 456–457 (1982).

    Article  CAS  Google Scholar 

  11. Hausdorff, J. M.et al. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80, 1448–1457 (1996).

    Article  CAS  Google Scholar 

  12. Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary time series. Chaos 5, 82–87 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Hurst, H. E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).

    Google Scholar 

  14. Vicsek, T. & Barabási, A. L. Multi-affine model for the velocity distribution in fully turbulent flows. J.Phys. A 24, L845–L851 (1991).

    Article  ADS  Google Scholar 

  15. Barabasi, A.-L. & Stanley, H. E. Fractal Concepts in Surface GrowthCh. 24 (Cambridge Univ. Press, Cambridge, (1995).

    Book  Google Scholar 

  16. Daubechies, I. Ten Lectures on Wavelets(SIAM, Philadelphia, (1992).

    Book  Google Scholar 

  17. Ivanov, P. Ch.et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Muzy, J. F., Bacry, E. & Arneodo, A. Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515–3518 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Muzy, J. F., Bacry, E. & Arneodo, A. The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos 4, 245–302 (1994).

    Article  MathSciNet  Google Scholar 

  20. Peng, C.-K.et al. Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease. J. Electrocardiol. 28, 59–65 (1996).

    Article  Google Scholar 

  21. Thurner, S., Feurstein, M. C. & Teich, M. C. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Phys. Rev. Lett. 80, 1544–2391 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Amaral, L. A. N., Goldberger, A. L., Ivanov, P. Ch. & Stanley, H. E. Scale-independent measures and pathologic cardiac dynamics. Phys. Rev. Lett. 81, 2388–2391 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Lefebvre, J.et al. Predictability of normal heart rhythms and deterministic chaos. Chaos 3, 267–276 (1993).

    Article  ADS  Google Scholar 

  24. Yamamoto, Y.et al. Operation Everest II: an indication of deterministic chaos in human heart rate variability at simulated extreme altitude. Biol. Cybern. 69, 205–212 (1993).

    Article  CAS  Google Scholar 

  25. Kanters, J. K., Holstein-Rathlou, N. H. & Agner, E. Lack of evidence for low-dimensional chaos in heart rate variability. J. Cardiovasc. Electrophysiol. 5, 128–137 (1994).

    Article  Google Scholar 

  26. Sugihara, G., Allan, W., Sobel, D. & Allan, K. D. Nonlinear control of heart rate variability in human infants. Proc. Natl Acad. Sci. USA 93, 2608–2613 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Poon, C-S. & Merrill, C. K. Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Meneveau, C. & Sreenivasan, K. R. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424–1427 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Ivanov, P. Ch., Amaral, A. L. N., Goldberger, A. L. & Stanley, H. E. Stochastic feedback and the regulation of biological rhythms. Europhys. Lett. 43, 363–368 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Moody, G. B. & Mark, R. G. Development and evaluation of a 2-lead ECG analysis program. Computers Cardiol. 9, 39–44 (1983).

    Google Scholar 

Download references

Acknowledgements

We thank A. Bunde, U. Frisch, J. M. Hausdorff, V. Horváth, H. Kallabis, R.G. Mark, J. Mietus, C.-K. Peng, K. R. Sreenivasan and B. J. West for discussions. We are especially grateful to A. Arneodo and T. Vicsek for advice on the analytical technique and on the text and R. Goldsmith for providing the blind test data. This work was supported by NASA, NIH, FCT/Portugal, and The G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Ch. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, P., Amaral, L., Goldberger, A. et al. Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999). https://doi.org/10.1038/20924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20924

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing