Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Noise to order

Abstract

Patterns in natural systems abound, from the stripes on a zebra to ripples in a riverbed. In many of these systems, the appearance of an ordered state is not unexpected as the outcome of an underlying ordered process. Thus crystal growth, honeycomb manufacture and floret evolution generate regular and predictable patterns. Intrinsically noisy and disordered processes such as thermal fluctuations or mechanically randomized scattering generate surprisingly similar patterns. Here we discuss some of the underlying mechanisms believed to be at the heart of these similarities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separation of hot and cold beads in a granular 'Maxwell's Demon' experiment.
Figure 2: Granular patterns from experiment and model.
Figure 3: Stability of striped and square lattice patterns.
Figure 4: Entropic ordering example in simple one-dimensional lattice.
Figure 5: Possible transition from segregation to mixing in a vibrated granular bed.

Similar content being viewed by others

References

  1. Shinbrot, T. A novel model of contact charging. J. Electrostat. 17, 113–123 (1985).

    Article  Google Scholar 

  2. Ball, P. The Self-made Tapestry: Pattern Formation in Nature (Oxford Univ. Press, Oxford, 1999).

    MATH  Google Scholar 

  3. Graham, M. D. et al. Effects of boundaries on pattern formation: catalytic oxidation of CO on platinum. Science 264, 80–82 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Vogel, G. Goodness gracious, great walls afar. Science 274, 343–343 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Toomre, A. & Toomre, J. Galactic bridges and tails. Astrophys. J. 178, 623–666 (1972).

    Article  ADS  Google Scholar 

  6. Sellwood, J. A. Spiral structure as a recurrent instability. Astrophys. Space Sci. 272, 31–43 (2000).

    Article  ADS  Google Scholar 

  7. Kondo, S. & Asal, R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Haim, D. et al. Breathing spots in a reaction-diffusion system. Phys. Rev. Lett. 77, 190–193 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Pearson, J. E. Complex patterns in a simple system. Science 261, 189–192 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Kadar, S., Wang J. & Showalter, K. Noise supported traveling waves in sub-excitable media. Nature 391, 770–772 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Adams, M., Dogic, Z., Keller S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Csahók1, Z., Misbah1, C., Rioual, F. & Valance, A. Dynamics of aeolian sand ripples. Eur. Phys. J. E 3, 71–86 (2000).

    Article  Google Scholar 

  14. Makse, H. A. Grain segregation mechanisms in aeolian sand ripples. Eur. Phys. J. E 1, 127–135 (2000).

    Article  CAS  Google Scholar 

  15. Lekkerkerker, H. N. W. & Stroobants, A. Ordering entropy. Nature 393, 305–306 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Reynolds, O. On the Action of Rain to Calm the Sea. Papers on Mechanical and Physical Subjects 86–88 (Cambridge Uvin. Press, London, 1900).

    Google Scholar 

  17. Tsimplis, M. N. The effect of rain in calming the sea. J. Phys. Oceanogr. 22, 404–412 (1993).

    Article  ADS  Google Scholar 

  18. Herzel, H. Stabilization of chaotic orbits by random noise. A. Angew. Math. Mech. 68, 11–12 (1988).

    Article  MathSciNet  Google Scholar 

  19. Walker, J. The Flying Circus of Physics 14–8, 99–100 (Wiley, New York, 1975).

    Google Scholar 

  20. Weisenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).

    Article  ADS  Google Scholar 

  21. Barnsley, M. Fractals Everywhere (Academic, Boston, 1988).

    MATH  Google Scholar 

  22. Jung, P. & Mayer-Kress, G. Spatiotemporal stochastic resonance in excitable media. Phys. Rev. Lett. 74, 2130–2133 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Shinbrot, T. & Scarbrough, K. Using variability to regulate long term biological rhythms. J. Theor. Biol. 196, 455–471 (1999).

    Article  CAS  Google Scholar 

  24. Strogatz, S. H. Nonlinear Dynamics and Chaos 254–255 (Addison Wesley, Reading, MA, 1994).

    Google Scholar 

  25. Caves, C. M., Unruh, W. G. & Zurek, W. H. Comment on 'Quantitative limits on the ability of a Maxwell demon to extract work from heat'. Phys. Rev. Lett. 65, 1387 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Brush, S. G. Statistical Physics and the Atomic Theory of Matter 86–90 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  27. Schlichting, H. J. & Nordmeier, V. Strukturen im Sand—Kollektives Verhalten und Selbstorganisation bei Granulaten Math. Naturwissenschaften 49, 323–332 (1996).

    Google Scholar 

  28. Eggers, J. Sand as Maxwell's demon. Phys. Rev. Lett. 83, 5322–5325 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Sano, O. Random motion of a marker particle on square cells formed on vertically vibrated granular layer. J. Phys. Soc. Jpn 68, 1769–1777 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Shinbrot, T. Competition between randomizing impacts and inelastic collisions in granular pattern formation. Nature 389, 574–576 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Bizon, C., Shattuck, M. D., Swift, J. B. & Swinney, H. L. Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60, 4340–4351 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Winfree, A. Heart muscle as a reaction-diffusion medium: the roles of electric potential, diffusion, activation front curvature, and anisotropy. Int. J. Bif. Chaos 7, 487–526 (1997).

    Article  MathSciNet  Google Scholar 

  33. Winfree, A. Electrical turbulence in 3-dimensional heart muscle. Science 266, 1003–1006 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Klausmeier, C. A. Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999).

    Article  CAS  Google Scholar 

  35. Lee, K. J., McCormick, W. D., Ouyang, Q. & Swinney, H. L. Pattern formation by interacting chemical fronts. Science 261, 192–194 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Gorman, M., el-Hamdi, M. & Pearson, B. Ratcheting motion of concentric rings in cellular flames. Phys. Rev. Lett. 76, 228–231 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Aldushin, A. P. & Matkowsky, B. J. Diffusion Driven Combustion Waves in Porous Media (Gordon & Breach, Newark, NJ, 1999).

    Google Scholar 

  38. Sellwood, J. A. & Carlberg, R. G. Spiral instabilities provoked by accretion and star formation. Astrophys. J. 282, 61–74 (1984).

    Article  ADS  CAS  Google Scholar 

  39. Wu, K. K. S., Lahav, O. & Rees, M. J. The large-scale smoothness of the universe. Nature 397, 225–230 (1999).

    Article  ADS  CAS  Google Scholar 

  40. Einasto, J. et al. A 120-mpc periodicity in the three-dimensional distribution of galaxy superclusters. Nature 385, 139–141 (1997).

    Article  ADS  CAS  Google Scholar 

  41. Goldhirsch, I. & Zanetti, G. Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993).

    Article  ADS  CAS  Google Scholar 

  42. Bizon, C., Shattuck, M. D., Swift, J. B., McCormick, W. D. & Swinney, H. L. Patterns in 3D vertically oscillated granular layers: simulation and experiment. Phys. Rev. Lett. 80, 57–60 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Shinbrot, T., Lomelo L. & Muzzio, F. J. Harmonic patterns in fine granular vibrated beds. Gran. Matt. 2, 65–69 (2000).

    Article  Google Scholar 

  44. Umbanhowar, P. B., Melo, F. & Swinney, H. L. Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Eggers, J. & Riecke, H. A continuum description of vibrated sand. Phys. Rev. E 59, 4476–4483 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Tsimring, L. S. & Aranson, I. S. Localized and cellular patterns in a vibrated granular layer. Phys. Rev. Lett. 79, 213–216 (1997).

    Article  ADS  CAS  Google Scholar 

  47. Venkataramani, S. C. & Ott, E. Spatio-temporal bifurcation phenomena with temporal period doubling: patterns in vibrated sand. Phys. Rev. Lett. 80, 3495–3498 (1998).

    Article  ADS  CAS  Google Scholar 

  48. Metcalf, T. H., Knight, J. B. & Jaeger, H. M. Standing wave patterns in shallow beds of vibrated granular material. Physica A 236, 202–210 (1997).

    Article  ADS  Google Scholar 

  49. Crawford, J. D., Gollub, J. P. & Lane, D. Hidden symmetries of parametrically forced waves. Nonlinearity 6, 119–164 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  50. Sinai, Ya. G. Dynamical systems with elastic reflections: ergodic properties of dispersing billiards. Russ. Math. Surv. 25, 137–147 (1970).

    Article  MathSciNet  Google Scholar 

  51. Ding, M.-Z., Grebogi, C., Ott, E. & Yorke, J. A. Transition to chaotic scattering. Phys. Rev. A 42, 7025–7040 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  52. Luding, S., Clément, E., Blumen, A., Rajchenbach, J. & Duran, J. Studies of columns of beads under external vibrations. Phys. Rev. E 49, 1634–1646 (1994).

    Article  ADS  CAS  Google Scholar 

  53. Aranson, I. S. et al. Electrostatically driven granular media: phase transitions and coarsening. Phys. Rev. Lett. 84, 3306–3309 (2000).

    Article  ADS  CAS  Google Scholar 

  54. Grier, D. G. A surprisingly attractive couple. Nature 393, 621–622 (1998).

    Article  ADS  CAS  Google Scholar 

  55. Gujrati, P. D. Entropy-driven phase separation and configurational correlations on a lattice: some rigorous results. Phys. Rev. E (in the press).

  56. Dinsmore, A. D., Yodh, A. G. & Pine, D. J. Entropic control of particle motion using passive surface microstructures. Nature 383, 239–242 (1996).

    Article  ADS  CAS  Google Scholar 

  57. Crocker, J. C. & Grier, D. G. When like charges attract: the effects of geometrical confinement on long-range colloidal interactions. Phys. Rev. Lett. 77, 1897–1900 (1996).

    Article  ADS  CAS  Google Scholar 

  58. Crocker, J. C., Matteo, J. A., Dinsmore, A. D. & Yodh, A. G. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82, 4352–4355 (1999).

    Article  ADS  CAS  Google Scholar 

  59. Duran, J. & Jullien, R. Attractive forces in a granular cocktail. Phys. Rev. Lett. 80, 3547–3550 (1998).

    Article  ADS  CAS  Google Scholar 

  60. van Roij, R., Mulder, B. & Dijkstra, M. Phase behavior of binary mixtures of thick and thin hard rods. Physica A 261, 374–390 (1998).

    Article  ADS  CAS  Google Scholar 

  61. Dijskstra, M. & Frenkel, D. Evidence for entropy-driven demising in hard-core fluids. Phys. Rev. Lett. 72, 298–300 (1994).

    Article  ADS  Google Scholar 

  62. Dijkstra, M. & van Roij, R. Entropy-driven demixing in binary hard-core mixtures: from hard spherocylinders towards hard spheres. Phys. Rev. E 56, 5594–5602 (1997).

    Article  ADS  CAS  Google Scholar 

  63. Dijkstra, M., van Roij, R. & Evans, R. Phase diagram of highly asymmetric binary hard-sphere mixtures. Phys. Rev. E 59, 5744–5771 (1999).

    Article  ADS  CAS  Google Scholar 

  64. König, A. & Ashcroft, N. W. Structure and effective interactions three-component hard sphere liquids Phys. Rev. E (in the press).

  65. Hong, D., Quinn, P. V. & Luding, S. Reverse Brazilian nut problem: competition between percolation and condensation. Phys Rev. Lett. (in the press); preprint cond-mat/0010459 also available at 〈http://xxx.lanl.gov〉.

  66. Shinbrot, T. & Muzzio, F. J. Nonequilibrium patterns in granular mixing and segregation. Phys. Today 25–30 (March 2000).

  67. Stewart, I. & Golubitsky, M. Fearful Symmetry: Is God a Geometer? (Penguin, London, 1992).

    MATH  Google Scholar 

  68. Silber, M. & Skeldon, A. C. Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection. Phys. Rev. E 59, 5446–5456 (1999).

    Article  ADS  CAS  Google Scholar 

  69. Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–236 (1997).

    Article  CAS  Google Scholar 

  70. Silber, M., Topaz, C. M. & Skeldon, A. C. Two-frequency forced Faraday waves: weakly damped modes and pattern selection. Physica D 143, 205–225 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  71. Edwards, W. S. & Fauve, S. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123–148 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  72. Kudrolli, A., Pier, B. & Gollub, J. P. Superlattice patterns in surface waves. Physica D 22, 99–111 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  73. Silber, M. & Proctor, M. R. E. Nonlinear competition between small and large hexagonal patterns. Phys. Rev. Lett. 81, 2450–2453 (1998).

    Article  ADS  CAS  Google Scholar 

  74. van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–323 (1997).

    Article  ADS  CAS  Google Scholar 

  75. Prause, B., Glazier, J. A., Gravina, S. & Montemagno, C. Magnetic resonance imaging of a three dimensional foam. J. Phys. 7, L511–L516 (1995).

    CAS  Google Scholar 

  76. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  77. Forrest, S. B. & Haff, P. K. Mechanics of wind ripple stratigraphy. Science 255, 1240–1243 (1992).

    Article  ADS  CAS  Google Scholar 

  78. Heaney, P. J. & Davis, A. M. Observation and origin of self-organized textures in agates. Science 269, 1562–1565 (1995).

    Article  ADS  CAS  Google Scholar 

  79. Hosoi, A. E. & Dupont, T. F. Layer formation in monodispersive suspensions and colloids. J. Fluid Mech. 328, 297–311 (1996).

    Article  ADS  CAS  Google Scholar 

  80. Mueth, D. M., Crocker, J. C., Esipov, S. E. & Grier, D. G. Origin of stratification in creaming emulsions. Phys. Rev. Lett. 77, 578–581 (1996).

    Article  ADS  CAS  Google Scholar 

  81. Mullin, T. Coarsening of self-organized clusters in binary mixtures of particles. Phys. Rev. Lett. 84, 4741–4744 (2000).

    Article  ADS  CAS  Google Scholar 

  82. Oliver, S., Kuperman, A., Coombs, N., Lough, A. & Ozin, G. A. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378, 47–50 (1995).

    Article  ADS  CAS  Google Scholar 

  83. Dogic, Z. & Fraden, S. Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett. 78, 2417–2420 (1997).

    Article  ADS  CAS  Google Scholar 

  84. Kestenbaum, D. Gentle force of entropy bridges disciplines. Science 279, 1849–1849 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful remarks and vital contributions from M. Dijkstra, Z. Dojic, S. Fraden, P. Garik, R. van Roij, H. Swinney and P. Umbanhowar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Shinbrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinbrot, T., Muzzio, F. Noise to order. Nature 410, 251–258 (2001). https://doi.org/10.1038/35065689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065689

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing