Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Establishing outcome measures in early knee osteoarthritis

Abstract

The classification and monitoring of individuals with early knee osteoarthritis (OA) are important considerations for the design and evaluation of therapeutic interventions and require the identification of appropriate outcome measures. Potential outcome domains to assess for early OA include patient-reported outcomes (such as pain, function and quality of life), features of clinical examination (such as joint line tenderness and crepitus), objective measures of physical function, levels of physical activity, features of imaging modalities (such as of magnetic resonance imaging) and biochemical markers in body fluid. Patient characteristics such as adiposity and biomechanics of the knee could also have relevance to the assessment of early OA. Importantly, research is needed to enable the selection of outcome measures that are feasible, reliable and validated in individuals at risk of knee OA or with early knee OA. In this Perspectives article, potential outcome measures for early symptomatic knee OA are discussed, including those measures that could be of use in clinical practice and/or the research setting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Suri, P., Morgenroth, D. C. & Hunter, D. J. Epidemiology of osteoarthritis and associated comorbidities. PM R 4, S10–S19 (2012).

    PubMed  Google Scholar 

  2. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2013).

    Google Scholar 

  3. Bombardier, C., Hawker, G. & Mosher, D. The Impact of Arthritis in Canada: Today and Over the Next 30 Years (Arthritis Alliance of Canada, 2011).

  4. Wright, E. A. et al. Impact of knee osteoarthritis on health care resource utilization in a US population-based national sample. Med. Care. 48, 785–791 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Losina, E. et al. Impact of obesity and knee osteoarthritis on morbidity and mortality in older Americans. Ann. Intern. Med. 154, 217–226 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Whittaker, J. L. et al. Association between MRI-defined osteoarthritis, pain, function and strength 3–10 years following knee joint injury in youth sport. Br. J. Sports Med. 52, 934–939 (2018).

    PubMed  Google Scholar 

  7. Centre for Metabolic Bone Diseases, University of Sheffield. FRAX® Fracture Risk Assessment Tool. FRAX https://www.shef.ac.uk/FRAX/tool.jsp (2008).

  8. Hippisley-Cox, J. & Coupland, C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344, e3427 (2012).

    PubMed  Google Scholar 

  9. Viswanathan, M. et al. Screening to prevent osteoporotic fractures: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 319, 2532–2551 (2018).

    PubMed  Google Scholar 

  10. Kerkhof, H. et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann. Rheum. Dis. 73, 2116–2121 (2014).

    CAS  PubMed  Google Scholar 

  11. Roemer, F. W., Kwoh, C. K., Hayashi, D., Felson, D. T. & Guermazi, A. The role of radiography and MRI for eligibility assessment in DMOAD trials of knee OA. Nat. Rev. Rheumatol. 14, 372–380 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Luyten, F. et al. Toward classification criteria for early osteoarthritis of the knee. Semin. Arthritis Rheum. 47, 457–463 (2017).

    PubMed  Google Scholar 

  13. Collins, N. J., Misra, D., Felson, D. T., Crossley, K. M. & Roos, E. M. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res. 63, S208–S228 (2011).

    Google Scholar 

  14. Collins, N. et al. Knee Injury and Osteoarthritis Outcome Score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthr. Cartil. 24, 1317–1329 (2016).

    CAS  PubMed  Google Scholar 

  15. Broderick, J. E., Schneider, S., Junghaenel, D. U., Schwartz, J. E. & Stone, A. A. Validity and reliability of patient-reported outcomes measurement information system instruments in osteoarthritis. Arthritis Care Res. 65, 1625–1633 (2013).

    Google Scholar 

  16. Hawker, G. A., Mian, S., Kendzerska, T. & French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 63, S240–S252 (2011).

    Google Scholar 

  17. Dworkin, R. H. et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 113, 9–19 (2005).

    PubMed  Google Scholar 

  18. Gooberman-Hill, R. et al. Assessing chronic joint pain: lessons from a focus group study. Arthritis Care Res. 57, 666–671 (2007).

    Google Scholar 

  19. Hawker, G. et al. Understanding the pain experience in hip and knee osteoarthritis — an OARSI/OMERACT initiative. Osteoarthr. Cartil. 16, 415–422 (2008).

    CAS  PubMed  Google Scholar 

  20. Maly, M. R. & Cott, C. A. Being careful: a grounded theory of emergent chronic knee problems. Arthritis Care Res. 61, 937–943 (2009).

    Google Scholar 

  21. Hensor, E., Dube, B., Kingsbury, S. R., Tennant, A. & Conaghan, P. G. Toward a clinical definition of early osteoarthritis: onset of patient-reported knee pain begins on stairs. Data from the Osteoarthritis Initiative. Arthritis Care Res. 67, 40–47 (2015).

    Google Scholar 

  22. Hawker, G. et al. Development and preliminary psychometric testing of a new OA pain measure — an OARSI/OMERACT initiative. Osteoarthr. Cartil. 16, 409–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Roos, E. M., Roos, H. P., Lohmander, L. S., Ekdahl, C. & Beynnon, B. D. Knee Injury and Osteoarthritis Outcome Score (KOOS) — development of a self-administered outcome measure. J. Orthop. Sports Phys. Ther. 28, 88–96 (1998).

    CAS  PubMed  Google Scholar 

  24. Örtqvist, M., Roos, E. M., Broström, E. W., Janarv, P.-M. & Iversen, M. D. Development of the knee injury and osteoarthritis outcome score for children (KOOS-Child) comprehensibility and content validity. Acta Orthop. 83, 666–673 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Roos, E. M. & Toksvig-Larsen, S. Knee injury and Osteoarthritis Outcome Score (KOOS) — validation and comparison to the WOMAC in total knee replacement. Health Qual. Life Outcomes 1, 17 (2003).

    PubMed  PubMed Central  Google Scholar 

  26. Roos, E. M., Roos, H., Ekdahl, C. & Lohmander, L. Knee injury and Osteoarthritis Outcome Score (KOOS) — validation of a Swedish version. Scand. J. Med. Sci. Sports 8, 439–448 (1998).

    CAS  PubMed  Google Scholar 

  27. Paradowski, P. T., Bergman, S., Sundén-Lundius, A., Lohmander, L. S. & Roos, E. M. Knee complaints vary with age and gender in the adult population. Population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS). BMC Musculoskelet. Disord. 7, 38 (2006).

    PubMed  PubMed Central  Google Scholar 

  28. Williamson, T., Sikka, R., Tompkins, M. & Nelson, B. J. Use of the Knee Injury and Osteoarthritis Outcome Score in a healthy United States population. Am. J. Sports Med. 44, 440–446 (2015).

    PubMed  Google Scholar 

  29. Gignac, M. A., Cott, C. & Badley, E. M. Adaptation to disability: applying selective optimization with compensation to the behaviors of older adults with osteoarthritis. Psychol. Aging 17, 520–524 (2002).

    PubMed  Google Scholar 

  30. Morden, A., Jinks, C. & Ong, B. N. Lay models of self-management: how do people manage knee osteoarthritis in context? Chronic Illn. 7, 185–200 (2011).

    PubMed  Google Scholar 

  31. Clark, J. M., Chesworth, B. M., Speechley, M., Petrella, R. J. & Maly, M. R. Questionnaire to identify knee symptoms: development of a tool to identify early experiences consistent with knee osteoarthritis. Phys. Ther. 94, 111–120 (2014).

    PubMed  Google Scholar 

  32. Bastick, A. et al. Defining knee pain trajectories in early symptomatic knee osteoarthritis in primary care: 5-year results from a nationwide prospective cohort study (CHECK). Br. J. Gen. Pract. 66, e32–e39 (2016).

    PubMed  Google Scholar 

  33. Wesseling, J. et al. CHECK (Cohort Hip and Cohort Knee): similarities and differences with the Osteoarthritis Initiative. Ann. Rheum. Dis. 68, 1413–1419 (2009).

    CAS  PubMed  Google Scholar 

  34. Kastelein, M. Traumatic and Non-traumatic Knee Complaints in General Practice. Thesis, Erasmus Univ., Rotterdam (2013).

  35. Schiphof, D., Waarsing, E., Oei, E. & Bierma-Zeinstra, S. Crepitus, joint line tenderness and the feeling of giving way are predictive signs for early knee osteoarthritis. Osteoarthr. Cartil. 23, A330 (2015).

    Google Scholar 

  36. Schiphof, D. et al. Crepitus is a first indication of patellofemoral osteoarthritis (and not of tibiofemoral osteoarthritis). Osteoarthr. Cartil. 22, 631–638 (2014).

    CAS  PubMed  Google Scholar 

  37. Maricar, N. et al. Interobserver and intraobserver reliability of clinical assessments in knee osteoarthritis. J. Rheumatol. 43, 2171–2178 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Andriacchi, T. P. et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32, 447–457 (2004).

    PubMed  Google Scholar 

  39. World Health Organization. International Classification of Functioning, Disability and Health: ICF (WHO, 2001).

  40. Dobson, F. et al. Measurement properties of performance-based measures to assess physical function in hip and knee osteoarthritis: a systematic review. Osteoarthr. Cartil. 20, 1548–1562 (2012).

    CAS  PubMed  Google Scholar 

  41. Dobson, F. et al. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthr. Cartil. 21, 1042–1052 (2013).

    CAS  PubMed  Google Scholar 

  42. Kroman, S. L., Roos, E. M., Bennell, K. L., Hinman, R. S. & Dobson, F. Measurement properties of performance-based outcome measures to assess physical function in young and middle-aged people known to be at high risk of hip and/or knee osteoarthritis: a systematic review. Osteoarthr. Cartil. 22, 26–39 (2014).

    CAS  PubMed  Google Scholar 

  43. Whittaker, J., Woodhouse, L., Nettel-Aguirre, A. & Emery, C. Outcomes associated with early post-traumatic osteoarthritis and other negative health consequences 3–10 years following knee joint injury in youth sport. Osteoarthr. Cartil. 23, 1122–1129 (2015).

    CAS  PubMed  Google Scholar 

  44. Baltich, J. et al. The impact of previous knee injury on force plate and field-based measures of balance. Clin. Biomech. 30, 832–838 (2015).

    Google Scholar 

  45. Whittaker, J. et al. Health-related outcomes following a youth sport-related knee injury. Med. Sci. Sports Exerc. 51, 255–263 (2018).

    Google Scholar 

  46. Moksnes, H., Engebretsen, L., Eitzen, I. & Risberg, M. A. Functional outcomes following a non-operative treatment algorithm for anterior cruciate ligament injuries in skeletally immature children 12 years and younger. A prospective cohort with 2 years follow-up. Br. J. Sports Med. 47, 488–494 (2013).

    PubMed  Google Scholar 

  47. Moksnes, H. & Risberg, M. A. Performance-based functional evaluation of non-operative and operative treatment after anterior cruciate ligament injury. Scand. J. Med. Sci. Sports 19, 345–355 (2009).

    CAS  PubMed  Google Scholar 

  48. Grindem, H., Eitzen, I., Moksnes, H., Snyder-Mackler, L. & Risberg, M. A. A. Pair-matched comparison of return to pivoting sports at 1 year in anterior cruciate ligament-injured patients after a nonoperative versus an operative treatment course. Am. J. Sports Med. 40, 2509–2516 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Logerstedt, D. et al. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction the Delaware-Oslo ACL Cohort study. Am. J. Sports Med. 40, 2348–2356 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. Kanko, L. E. et al. The star excursion balance test is a reliable and valid outcome measure for patients with knee osteoarthritis. Osteoarthr. Cartil. 27, 580–585 (2019).

    CAS  PubMed  Google Scholar 

  51. Gribble, P. A., Hertel, J. & Plisky, P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J. Athl. Train. 47, 339–357 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Plisky, P. J., Rauh, M. J., Kaminski, T. W. & Underwood, F. B. Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sports Phys. Ther. 36, 911–919 (2006).

    PubMed  Google Scholar 

  53. Herrington, L., Hatcher, J., Hatcher, A. & McNicholas, M. A comparison of star excursion balance test reach distances between ACL deficient patients and asymptomatic controls. Knee 16, 149–152 (2009).

    PubMed  Google Scholar 

  54. Shaffer, S. W. et al. Y-balance test: a reliability study involving multiple raters. Mil. Med. 178, 1264–1270 (2013).

    PubMed  Google Scholar 

  55. Hegedus, E. J., McDonough, S. M., Bleakley, C., Baxter, D. & Cook, C. E. Clinician-friendly lower extremity physical performance tests in athletes: a systematic review of measurement properties and correlation with injury. Part 2 — the tests for the hip, thigh, foot and ankle including the star excursion balance test. Br. J. Sports Med. 49, 649–656 (2015).

    PubMed  Google Scholar 

  56. Jones, C. J. & Rikli, R. E. Measuring functional fitness of older adults. J. Active Aging 1, 24–30 (2002).

    Google Scholar 

  57. Jones, C. J., Rikli, R. E. & Beam, W. C. A. 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 70, 113–119 (1999).

    CAS  PubMed  Google Scholar 

  58. Rikli, R. E. & Jones, C. J. Functional fitness normative scores for community-residing older adults, ages 60–94. J. Aging Phys. Act. 7, 162–181 (1999).

    Google Scholar 

  59. Ekegren, C. L., Miller, W. C., Celebrini, R. G., Eng, J. J. & Macintyre, D. L. Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J. Orthop. Sports Phys. Ther. 39, 665–674 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Weeks, B. K., Carty, C. P. & Horan, S. A. Kinematic predictors of single-leg squat performance: a comparison of experienced physiotherapists and student physiotherapists. BMC Musculoskelet. Disord. 13, 207 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Crossley, K. M., Zhang, W.-J., Schache, A. G., Bryant, A. & Cowan, S. M. Performance on the single-leg squat task indicates hip abductor muscle function. Am. J. Sports Med. 39, 866–873 (2011).

    PubMed  Google Scholar 

  62. Lorenzen, K. et al. Kinetics and kinematics of the knee during a single leg squat 3–10 years after AN intra-articular knee injury sustained while participating in youth sports. Osteoarthr. Cartil. 23, A104 (2015).

    Google Scholar 

  63. Emery, C. A., Cassidy, J. D., Klassen, T. P., Rosychuk, R. J. & Rowe, B. H. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents. Phys. Ther. 85, 502–514 (2005).

    PubMed  Google Scholar 

  64. Aandstad, A., Holme, I., Berntsen, S. & Anderssen, S. A. Validity and reliability of the 20 meter shuttle run test in military personnel. Mil. Med. 176, 513–518 (2011).

    PubMed  Google Scholar 

  65. Øiestad, B. E., Juhl, C. B., Eitzen, I. & Thorlund, J. B. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthr. Cartil. 23, 171–177 (2015).

    PubMed  Google Scholar 

  66. Chang, A. H. et al. Hip muscle strength and protection against structural worsening and poor function and disability outcomes in knee osteoarthritis. Osteoarthr. Cartil. https://doi.org/10.1016/j.joca.2019.02.795 (2019).

    CAS  PubMed  Google Scholar 

  67. Wang, X., Hunter, D., Xu, J. & Ding, C. Metabolic triggered inflammation in osteoarthritis. Osteoarthr. Cartil. 23, 22–30 (2015).

    CAS  PubMed  Google Scholar 

  68. Chu, C. R., Williams, A. A., Coyle, C. H. & Bowers, M. E. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res. Ther. 14, 212 (2012).

    PubMed  PubMed Central  Google Scholar 

  69. Richmond, S. A. et al. Are joint injury, sport activity, physical activity, obesity, or occupational activities predictors for osteoarthritis? A systematic review. J. Orthop. Sports Phys. Ther. 43, B515–B519 (2013).

    Google Scholar 

  70. Mezhov, V. et al. Does obesity affect knee cartilage? A systematic review of magnetic resonance imaging data. Obes. Rev. 15, 143–157 (2014).

    CAS  PubMed  Google Scholar 

  71. Lim, Y. Z. et al. Association of obesity and systemic factors with bone marrow lesions at the knee: a systematic review. Semin. Arthritis Rheum. 43, 600–612 (2014).

    PubMed  Google Scholar 

  72. Lohmander, L. S., de Verdier, M. G., Rollof, J., Nilsson, P. M. & Engström, G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann. Rheum. Dis. 68, 490–496 (2009).

    CAS  PubMed  Google Scholar 

  73. Cibere, J. et al. Association of clinical findings with pre-radiographic and radiographic knee osteoarthritis in a population-based study. Arthritis Care Res. 62, 1691–1698 (2010).

    Google Scholar 

  74. Wang, Y. et al. Body composition and knee cartilage properties in healthy, community-based adults. Ann. Rheum. Dis. 66, 1244–1248 (2007).

    PubMed  PubMed Central  Google Scholar 

  75. Myer, G. D. et al. Injury initiates unfavourable weight gain and obesity markers in youth. Br. J. Sports Med. 48, 1477–1481 (2014).

    PubMed  Google Scholar 

  76. Onat, A., Uğur, M., Can, G., Yüksel, H. & Hergenç, G. Visceral adipose tissue and body fat mass: predictive values for and role of gender in cardiometabolic risk among Turks. Nutrition 26, 382–389 (2010).

    PubMed  Google Scholar 

  77. Toomey, C. M. et al. Higher fat mass is associated with a history of knee injury in youth sport. J. Orthop. Sports Phys. Ther. 47, 80–87 (2017).

    PubMed  Google Scholar 

  78. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation 116, 39–48 (2007).

    PubMed  Google Scholar 

  79. Berry, P. et al. The relationship between body composition and structural changes at the knee. Rheumatology 49, 2362–2369 (2010).

    PubMed  Google Scholar 

  80. Visser, A. et al. The role of fat mass and skeletal muscle mass in knee osteoarthritis is different for men and women: the NEO study. Osteoarthr. Cartil. 22, 197–202 (2014).

    CAS  PubMed  Google Scholar 

  81. Ding, C., Stannus, O., Cicuttini, F., Antony, B. & Jones, G. Body fat is associated with increased and lean mass with decreased knee cartilage loss in older adults: a prospective cohort study. Int. J. Obes. 37, 822–827 (2013).

    CAS  Google Scholar 

  82. Visser, A. W. et al. Adiposity and hand osteoarthritis: the Netherlands Epidemiology of Obesity study. Arthritis Res. Ther. 16, R19 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Teichtahl, A. J. et al. The longitudinal relationship between body composition and patella cartilage in healthy adults. Obesity 16, 421–427 (2008).

    PubMed  Google Scholar 

  84. Miller, M. E., Rejeski, W. J., Reboussin, B. A., Have, T. R. & Ettinger, W. H. Physical activity, functional limitations, and disability in older adults. J. Am. Geriatr. Soc. 48, 1264–1272 (2000).

    CAS  PubMed  Google Scholar 

  85. Vignon, É. et al. Osteoarthritis of the knee and hip and activity: a systematic international review and synthesis (OASIS). Joint Bone Spine 73, 442–455 (2006).

    PubMed  Google Scholar 

  86. Chmelo, E. et al. Physical activity and physical function in older adults with knee osteoarthritis. J. Phys. Act. Health 10, 777–783 (2013).

    PubMed  Google Scholar 

  87. Rejeski, W. J., Ettinger, W. H. Jr, Martin, K. & Morgan, T. Treating disability in knee osteoarthritis with exercise therapy: a central role for self-efficacy and pain. Arthritis Care Res. 11, 94–101 (1998).

    CAS  PubMed  Google Scholar 

  88. Hovis, K. K. et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 63, 2248–2256 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Lin, W. et al. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 21, 1558–1566 (2013).

    CAS  PubMed  Google Scholar 

  90. Dunlop, D. D. et al. Relation of physical activity time to incident disability in community dwelling adults with or at risk of knee arthritis: prospective cohort study. BMJ 348, g2472 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Santos-Lozano, A. et al. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int. J. Sports Med. 34, 975–982 (2013).

    CAS  PubMed  Google Scholar 

  92. Strath, S. J. et al. Guide to the assessment of physical activity: clinical and research applications: a scientific statement from the American Heart Association. Circulation 128, 2259–2279 (2013).

    PubMed  Google Scholar 

  93. Butte, N. F., Ekelund, U. & Westerterp, K. R. Assessing physical activity using wearable monitors: measures of physical activity. Med. Sci. Sports Exerc. 44, S5–S12 (2012).

    PubMed  Google Scholar 

  94. Ahn, G. E. et al. Relationship of objective to self-reported physical activity measures among adults in the osteoarthritis initiative [abstract 242]. Arthritis Rheum. 64, S104–S105 (2012).

    Google Scholar 

  95. Christensen, R., Astrup, A. & Bliddal, H. Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthr. Cartil. 13, 20–27 (2005).

    CAS  PubMed  Google Scholar 

  96. Bartels, E. et al. Effect of a 16 weeks weight loss program on osteoarthritis biomarkers in obese patients with knee osteoarthritis: a prospective cohort study. Osteoarthr. Cartil. 22, 1817–1825 (2014).

    CAS  PubMed  Google Scholar 

  97. Zheng, H. & Chen, C. Body mass index and risk of knee osteoarthritis: systematic review and meta-analysis of prospective studies. BMJ Open 5, e007568 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Christensen, R., Bartels, E. M., Astrup, A. & Bliddal, H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 66, 433–439 (2007).

    PubMed  PubMed Central  Google Scholar 

  99. Dai, Z., Niu, J., Zhang, Y., Jacques, P. & Felson, D. T. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts. Ann. Rheum. Dis. 76, 1411–1419 (2017).

    CAS  PubMed  Google Scholar 

  100. Ameye, L. G. & Chee, W. S. Osteoarthritis and nutrition. From nutraceuticals to functional foods: a systematic review of the scientific evidence. Arthritis Res. Ther. 8, R127 (2006).

    PubMed  PubMed Central  Google Scholar 

  101. Sanghi, D. et al. Elucidation of dietary risk factors in osteoarthritis knee — a case–control study. J. Am. Coll. Nutr. 34, 15–20 (2015).

    CAS  PubMed  Google Scholar 

  102. Subar, A. F. et al. The Automated Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 112, 1134–1137 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. Schröder, H. et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 141, 1140–1145 (2011).

    PubMed  Google Scholar 

  104. Sturnieks, D. L. et al. Knee joint biomechanics following arthroscopic partial meniscectomy. J. Orthop. Res. 26, 1075–1080 (2008).

    PubMed  Google Scholar 

  105. Gardinier, E. S., Manal, K., Buchanan, T. S. & Snyder-Mackler, L. Altered loading in the injured knee after ACL rupture. J. Orthop. Res. 31, 458–464 (2013).

    PubMed  Google Scholar 

  106. Haughom, B. D., Souza, R., Schairer, W. W., Li, X. & Ma, C. B. Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg. Sports Traumatol. Arthrosc. 20, 663–670 (2012).

    PubMed  Google Scholar 

  107. Waite, J., Beard, D., Dodd, C., Murray, D. & Gill, H. In vivo kinematics of the ACL-deficient limb during running and cutting. Knee Surg. Sports Traumatol. Arthrosc. 13, 377–384 (2005).

    CAS  PubMed  Google Scholar 

  108. Zhang, L.-Q., Shiavi, R. G., Limbird, T. J. & Minorik, J. M. Six degrees-of-freedom kinematics of ACL deficient knees during locomotion — compensatory mechanism. Gait Posture 17, 34–42 (2003).

    PubMed  Google Scholar 

  109. Noyes, F. R., Schipplein, O. D., Andriacchi, T. P., Saddemi, S. R. & Weise, M. The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings. Am. J. Sports Med. 20, 707–716 (1992).

    CAS  PubMed  Google Scholar 

  110. Hubley-Kozey, C., Deluzio, K., Landry, S., McNutt, J. & Stanish, W. Neuromuscular alterations during walking in persons with moderate knee osteoarthritis. J. Electromyogr. Kinesiol. 16, 365–378 (2006).

    CAS  PubMed  Google Scholar 

  111. Heiden, T. L., Lloyd, D. G. & Ackland, T. R. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin. Biomech. 24, 833–841 (2009).

    Google Scholar 

  112. Mündermann, A., Dyrby, C. O. & Andriacchi, T. P. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 52, 2835–2844 (2005).

    PubMed  Google Scholar 

  113. Rudolph, K. S., Schmitt, L. C. & Lewek, M. D. Age-related changes in strength, joint laxity, and walking patterns: are they related to knee osteoarthritis? Phys. Ther. 87, 1422–1432 (2007).

    PubMed  PubMed Central  Google Scholar 

  114. Hortobágyi, T. et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin. Biomech. 20, 97–104 (2005).

    Google Scholar 

  115. Benedetti, M. et al. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. 18, 871–876 (2003).

    CAS  Google Scholar 

  116. Kuntze, G., von Tscharner, V., Hutchison, C. & Ronsky, J. L. Alterations in lower limb multimuscle activation patterns during stair climbing in female total knee arthroplasty patients. J. Neurophysiol. 114, 2718–2725 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kuntze, G., von Tscharner, V., Hutchison, C. & Ronsky, J. Multi-muscle activation strategies during walking in female post-operative total joint replacement patients. J. Electromyogr. Kinesiol. 25, 715–721 (2015).

    CAS  PubMed  Google Scholar 

  118. Cicuttini, F., Wluka, A., Hankin, J. & Wang, Y. Longitudinal study of the relationship between knee angle and tibiofemoral cartilage volume in subjects with knee osteoarthritis. Rheumatology 43, 321–324 (2004).

    CAS  PubMed  Google Scholar 

  119. Sharma, L. et al. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286, 188–195 (2001).

    CAS  PubMed  Google Scholar 

  120. Wikstrom, E. A., Tillman, M. D., Chmielewski, T. L. & Borsa, P. A. Measurement and evaluation of dynamic joint stability of the knee and ankle after injury. Sports Med. 36, 393–410 (2006).

    PubMed  Google Scholar 

  121. Riemann, B. L. & Lephart, S. M. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J. Athl. Train. 37, 80–84 (2002).

    PubMed  PubMed Central  Google Scholar 

  122. Williams, G. N., Buchanan, T. S., Barrance, P. J., Axe, M. J. & Snyder-Mackler, L. Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am. J. Sports Med. 33, 402–407 (2005).

    PubMed  Google Scholar 

  123. Suter, E. & Herzog, W. Does muscle inhibition after knee injury increase the risk of osteoarthritis? Exerc. Sport Sci. Rev. 28, 15–18 (2000).

    CAS  PubMed  Google Scholar 

  124. Hurley, M. V. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum. Dis. Clin. North Am. 25, 283–298 (1999).

    CAS  PubMed  Google Scholar 

  125. Bennell, K. L., Hunt, M. A., Wrigley, T. V., Lim, B.-W. & Hinman, R. S. Role of muscle in the genesis and management of knee osteoarthritis. Rheum. Dis. Clin. North Am. 34, 731–754 (2008).

    PubMed  Google Scholar 

  126. Roos, E. M., Herzog, W., Block, J. A. & Bennell, K. L. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat. Rev. Rheumatol. 7, 57–63 (2011).

    PubMed  Google Scholar 

  127. Van de Velde, S. K. et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 60, 3693–3702 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Liu, F. et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43, 658–665 (2010).

    PubMed  Google Scholar 

  129. Gardinier, E. S., Di Stasi, S., Manal, K., Buchanan, T. S. & Snyder-Mackler, L. Knee contact force asymmetries in patients who failed return-to-sport readiness criteria 6 months after anterior cruciate ligament reconstruction. Am. J. Sports Med. 42, 2917–2925 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Gardinier, E. S., Manal, K., Buchanan, T. S. & Snyder-Mackler, L. Clinically-relevant measures associated with altered contact forces in patients with anterior cruciate ligament deficiency. Clin. Biomech. 29, 531–536 (2014).

    Google Scholar 

  131. Andriacchi, T. P., Favre, J., Erhart-Hledik, J. & Chu, C. R. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Ann. Biomed. Eng. 43, 376–387 (2015).

    PubMed  Google Scholar 

  132. Gardiner, B. S. et al. Predicting knee osteoarthritis. Ann. Biomed. Eng. 44, 222–233 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Kobsar, D., Osis, S. T., Phinyomark, A., Boyd, J. E. & Ferber, R. Reliability of gait analysis using wearable sensors in patients with knee osteoarthritis. J. Biomech. 49, 3977–3982 (2016).

    PubMed  Google Scholar 

  134. Kobsar, D., Osis, S. T., Boyd, J. E., Hettinga, B. A. & Ferber, R. Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis. J. Neuroeng. Rehabil. 14, 94 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Tadano, S., Takeda, R., Sasaki, K., Fujisawa, T. & Tohyama, H. Gait characterization for osteoarthritis patients using wearable gait sensors (H-Gait systems). J. Biomech. 49, 684–690 (2016).

    PubMed  Google Scholar 

  136. Sutter, E. G. et al. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity. Am. J. Sports Med. 43, 370–376 (2015).

    PubMed  Google Scholar 

  137. Chehab, E. F., Favre, J., Erhart-Hledik, J. C. & Andriacchi, T. P. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthr. Cartil. 22, 1833–1839 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Walter, J. P. et al. Muscle synergies may improve optimization prediction of knee contact forces during walking. J. Biomech. Eng. 136, 021031 (2014).

    PubMed  Google Scholar 

  139. Gerus, P. et al. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46, 2778–2786 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Johnson, W. R., Alderson, J., Lloyd, D. G. & Mian, A. Predicting athlete ground reaction forces and moments from spatio-temporal driven CNN models. IEEE Trans. Biomed. Eng. 66, 689–694 (2019).

    PubMed  Google Scholar 

  141. Long, M. J., Papi, E., Duffell, L. D. & McGregor, A. H. Predicting knee osteoarthritis risk in injured populations. Clin. Biomech. 47, 87–95 (2017).

    Google Scholar 

  142. Pfeiffer, S. et al. Associations between slower walking speed and T1ρ magnetic resonance imaging of femoral cartilage following anterior cruciate ligament reconstruction. Arthritis Care Res. 70, 1132–1140 (2018).

    CAS  Google Scholar 

  143. Chu, C. R. et al. Mechanically stimulated biomarkers signal cartilage changes over 5 years consistent with disease progression in medial knee osteoarthritis patients. J. Orthop. Res. 36, 891–897 (2018).

    CAS  PubMed  Google Scholar 

  144. Pietrosimone, B. et al. Biochemical markers of cartilage metabolism are associated with walking biomechanics 6-months following anterior cruciate ligament reconstruction. J. Orthop. Res. 35, 2288–2297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Favre, J., Erhart-Hledik, J., Chehab, E. & Andriacchi, T. Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years. J. Biomech. 49, 1859–1864 (2016).

    PubMed  Google Scholar 

  146. Erhart-Hledik, J. et al. A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) and changes in cartilage thickness after 5 years. Osteoarthr. Cartil. 20, 1309–1315 (2012).

    CAS  PubMed  Google Scholar 

  147. Hayashi, D., Roemer, F. & Guermazi, A. Recent advances in research imaging of osteoarthritis with focus on MRI, ultrasound and hybrid imaging. Clin. Exp. Rheumatol. 36 (Suppl. 114), 43–52 (2018).

    PubMed  Google Scholar 

  148. Hayashi, D., Roemer, F. W. & Guermazi, A. Imaging of osteoarthritis — recent research developments and future perspective. Br. J. Radiol. 91, 20170349 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Brandt, K. D., Fife, R. S., Braunstein, E. M. & Katz, B. Radiographic grading of the severity of knee osteoarthritis: relation of the Kellgren and Lawrence grade to a grade based on joint space narrowing, and correlation with arthroscopic evidence of articular cartilage degeneration. Arthritis Rheum. 34, 1381–1386 (1991).

    CAS  PubMed  Google Scholar 

  150. Kellgren, J. H. & Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Wirth, W. et al. Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 21, 117–125 (2013).

    CAS  PubMed  Google Scholar 

  152. Guermazi, A. et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345, e5339 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. Hunter, D. J. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr. Cartil. 19, 990–1002 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sharma, L. et al. Tissue lesions in osteoarthritis initiative participants with normal X-rays and risk factors for incident cartilage damage [abstract 2467]. Arthritis Rheum. 64 (Suppl. 10), S1039–S1040 (2012).

    Google Scholar 

  155. Su, F. et al. Cartilage morphology and T 1 and T 2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthr. Cartil. 21, 1058–1067 (2013).

    CAS  Google Scholar 

  156. Van Ginckel, A., Verdonk, P. & Witvrouw, E. Cartilage adaptation after anterior cruciate ligament injury and reconstruction: implications for clinical management and research? A systematic review of longitudinal MRI studies. Osteoarthr. Cartil. 21, 1009–1024 (2013).

    PubMed  Google Scholar 

  157. Hunter, D. J. et al. The effect of anterior cruciate ligament injury on bone curvature: exploratory analysis in the KANON trial. Osteoarthr. Cartil. 22, 959–968 (2014).

    CAS  PubMed  Google Scholar 

  158. Neogi, T. & Felson, D. T. Osteoarthritis: bone as an imaging biomarker and treatment target in OA. Nat. Rev. Rheumatol. 12, 503–504 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bowes, M. et al. Marked and rapid change of bone shape in acutely ACL injured knees — an exploratory analysis of the KANON trial. Osteoarthr. Cartil. 27, 638–645 (2019).

    CAS  PubMed  Google Scholar 

  160. Hunter, D. J. et al. Definition of osteoarthritis on MRI: results of a Delphi exercise. Osteoarthr. Cartil. 19, 963–969 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Schiphof, D. et al. Sensitivity and associations with pain and body weight of an MRI definition of knee osteoarthritis compared with radiographic Kellgren and Lawrence criteria: a population-based study in middle-aged females. Osteoarthr. Cartil. 22, 440–446 (2014).

    CAS  PubMed  Google Scholar 

  162. Culvenor, A. G. et al. Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation. Arthritis Rheumatol. 67, 946–955 (2015).

    CAS  PubMed  Google Scholar 

  163. Roemer, F. W. et al. Molecular and structural biomarkers of inflammation at two years after acute anterior cruciate ligament injury do not predict structural knee osteoarthritis at five years. Arthritis Rheumatol. 71, 238–243 (2019).

    CAS  PubMed  Google Scholar 

  164. Roemer, F. W., Frobell, R., Lohmander, L. S., Niu, J. & Guermazi, A. Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS): longitudinal MRI-based whole joint assessment of anterior cruciate ligament injury. Osteoarthr. Cartil. 22, 668–682 (2014).

    PubMed  Google Scholar 

  165. Hunter, D. et al. OARSI Clinical Trials Recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthr. Cartil. 23, 698–715 (2015).

    CAS  PubMed  Google Scholar 

  166. Guermazi, A. et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann. Rheum. Dis. 70, 805–811 (2011).

    PubMed  Google Scholar 

  167. Magnusson, K., Kumm, J., Turkiewicz, A. & Englund, M. A naturally aging knee, or development of early knee osteoarthritis? Osteoarthr. Cartil. 26, 1447–1452 (2018).

    CAS  Google Scholar 

  168. Baert, I. A. et al. Weak associations between structural changes on MRI and symptoms, function and muscle strength in relation to knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 22, 2013–2025 (2014).

    PubMed  Google Scholar 

  169. Neogi, T. et al. Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. BMJ 339, b2844 (2009).

    PubMed  PubMed Central  Google Scholar 

  170. Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A. & Lohmander, L. S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr. Cartil. 23, 1233–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bruyère, O. et al. Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthr. Cartil. 15, 98–103 (2007).

    PubMed  Google Scholar 

  172. Hayashi, D. et al. Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study. Osteoarthr. Cartil. 22, 76–83 (2014).

    CAS  PubMed  Google Scholar 

  173. Englund, M. et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 359, 1108–1115 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Felson, D. & Lohmander, L. Whither osteoarthritis biomarkers? Osteoarthr. Cartil. 17, 419–422 (2009).

    CAS  Google Scholar 

  175. Bay-Jensen, A. C., Thudium, C. S. & Mobasheri, A. Development and use of biochemical markers in osteoarthritis: current update. Curr. Opin. Rheumatol. 30, 121–128 (2017).

    Google Scholar 

  176. Ling, S. M. et al. Serum protein signatures detect early radiographic osteoarthritis. Osteoarthr. Cartil. 17, 43–48 (2009).

    CAS  PubMed  Google Scholar 

  177. Golightly, Y. M. et al. 124 serum cartilage oligomeric matrix protein hyaluronan high-sensitivity C-reactive protein and keratan sulfate as predictors of incident radiographic knee osteoarthritis: differences by chronic knee symptoms. Osteoarthr. Cartil. 18, S62–S63 (2010).

    Google Scholar 

  178. Blumenfeld, O. et al. Association between cartilage and bone biomarkers and incidence of radiographic knee osteoarthritis (RKOA) in UK females: a prospective study. Osteoarthr. Cartil. 21, 923–929 (2013).

    CAS  PubMed  Google Scholar 

  179. Sowers, M. et al. The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum. 42, 483–489 (1999).

    CAS  PubMed  Google Scholar 

  180. Kosinska, M. K. et al. Sphingolipids in human synovial fluid: a lipidomic study. PLOS ONE 9, e91769 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. Adams, S. et al. Global metabolic profiling of human osteoarthritic synovium. Osteoarthr. Cartil. 20, 64–67 (2012).

    PubMed  Google Scholar 

  182. Bauer, D. et al. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthr. Cartil. 14, 723–727 (2006).

    CAS  PubMed  Google Scholar 

  183. Kraus, V. B. et al. OARSI clinical trials recommendations: soluble biomarker assessments in clinical trials in osteoarthritis. Osteoarthr. Cartil. 23, 686–697 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Van Spil, W., DeGroot, J., Lems, W., Oostveen, J. & Lafeber, F. Serum and urinary biochemical markers for knee and hip-osteoarthritis: a systematic review applying the consensus BIPED criteria. Osteoarthr. Cartil. 18, 605–612 (2010).

    PubMed  Google Scholar 

  185. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (National Institutes of Health, 2016).

  186. van der Elst, K. et al. Unraveling patient-preferred health and treatment outcomes in early rheumatoid arthritis: a longitudinal qualitative study. Arthritis Care Res. 68, 1278–1287 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Alberta Team Osteoarthritis (Alberta Innovates Health Solutions Collaborative Research and Innovation Opportunity Team), Arthritis Research UK and the Osteoarthritis Research Society International. The authors acknowledge the following consortium affiliations: 18D-BOARD Consortium, European Commission Framework 7 programme (S.B.-Z., J.R. and A.Mo.), Primary Care Versus Arthritis, UK (G.P.), the Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, UK (A.Mo. and N.K.A.) and the APPROACH Consortium, European Commission Innovative Medicines Initiative (A.Mo.). The authors thank T. Childs (Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada) for administrative support.

Reviewer information

Nature Reviews Rheumatology thanks J. Driban and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.A.E., J.L.W., N.K.A., A. Ma., L.S.L. and F.P.L. wrote the article. All authors researched data for the article, provided substantial contributions to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Carolyn A. Emery.

Ethics declarations

Competing interests

C.A.E., J.L.W., A. Ma., N.K.A., K.L.B., C.M.T., R.A.R., D.T., J.L.R., G.K., D.G.L., T.A., M.E., V.B.K., E.L., S.B.-Z., J.R., G.P., F.P.L., L.S.-M., M.A.R. and A. Mo. declare no competing interests. E.M.R. and L.S.L. declare that they contributed to the development of the KOOS. L.S.L. also declares that he contributed to the development of the ICOAP and the Anterior Cruciate Ligament Osteoarthritis Score (ACLOAS). A.G. is a consultant to AstraZeneca, Merck Serono, TissueGene and Pfizer, and he is a shareholder of Boston Imaging Core Lab, LCC. D.J.H. is a consultant to Merck Serono, Pfizer, TissueGene and TLCBio, and contributed to the development of the MRI Osteoarthritis Knee Score (MOAKS).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

KOOS scoring instructions: http://www.koos.nu/

Osteoarthritis Initiative: https://nda.nih.gov/oai

Single leg hop for distance: https://www.sralab.org/rehabilitation-measures/single-limb-hop-tests

30-Second chair sit-to-stand test: https://vimeo.com/74649743

6-Minute walk test: https://vimeo.com/74649737

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, C.A., Whittaker, J.L., Mahmoudian, A. et al. Establishing outcome measures in early knee osteoarthritis. Nat Rev Rheumatol 15, 438–448 (2019). https://doi.org/10.1038/s41584-019-0237-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0237-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing