Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children

Abstract

OBJECTIVE: To determine the accuracy of foot-to-foot bioelectrical impedance analysis (BIA) and anthropometric indices as measures of body composition in children.

DESIGN: Comparison of foot-to-foot BIA and anthropometry to dual-energy X-ray absorptiometry (DEXA)-derived body composition in a multi-ethnic group of children.

SUBJECTS: Eighty-two European, NZ Maori and Pacific Island children aged 4.9–10.9 y.

MEASUREMENTS: DEXA body composition, foot-to-foot bioelectrical impedance, height, weight, hip and waist measurements.

RESULTS: Using a BIA prediction equation derived from our study population we found a high correlation between DEXA and BIA in the estimation of fat-free mass (FFM), fat mass (FM) and percentage body fat (PBF) (r=0.98, 0.98 and 0.94, respectively). BIA-FFM underestimated DEXA-FFM by a mean of 0.75 kg, BIA-FM overestimated DEXA-FM by a mean of 1.02 kg and BIA-PBF overestimated DEXA-PBF by a mean of 2.53%. The correlation between six anthropometric indices (body mass index (BMI), ponderal index, Chinn's weight-for-height index, BMI standard deviation score, weight-for-length index and Cole's weight-for-height index) and DEXA were also examined. The correlation of these indices with PBF was remarkably similar (r=0.85–0.87), more variable with FM (r=0.77–0.94) and poor with FFM (r=0.41–0.75).

CONCLUSIONS: BIA correlated better than anthropometric indices in the estimation of FFM, FM and PBF. Foot-to-foot BIA is an accurate technique in the measurement of body composition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Goulding A, Gold E, Cannan R, Taylor RW, Williams S, Lewis-Barned NJ . DEXA supports the use of BMI as a measure of fatness in young girls Int J Obes Relat Metab Disord 1996 20: 1014–1021.

    CAS  PubMed  Google Scholar 

  2. Van den Broeck J, Wit J . Anthropometry and body composition in children Horm Res 1997 48 (Suppl 1): 33–42.

    Article  CAS  PubMed  Google Scholar 

  3. Du Rant RH, Linder CW . An evaluation of five indices of relative body weight for use in children J Am Diet Assoc 1981 78: 35–41.

    CAS  Google Scholar 

  4. Bandini LG, Vu DM, Must A, Dietz WH . Body fatness and bioelectrical impedance in non-obese pre-menarcheal girls: comparison to anthropometry and evaluation of predictive equations Eur J Clin Nutr 1997 51: 673–677.

    Article  CAS  PubMed  Google Scholar 

  5. Boot AM, Bouquet J, De Riddler MAJ, Krenning EP, De Munick Keizer-Schrama SMPF . Determinants of body composition measured by dual-energy X-ray absortiometry in Dutch children and adolescents Am J Clin Nutr 1997 66: 232–238.

    Article  CAS  PubMed  Google Scholar 

  6. Schaefer F, Georgi M, Zieger A, Scharer K . Usefulness of bioelectrical impedance and skinfold measurements in predicting fat-free mass derived from total body potassium in children Pediatr Res 1994 35: 617–624.

    Article  CAS  PubMed  Google Scholar 

  7. Houtkooper LB, Going SB, Lohman TG, Roche AF, Van Loan M . Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study J Appl Physiol 1992 72: 366–373.

    Article  CAS  PubMed  Google Scholar 

  8. Suprasongsin C, Kalhan S, Arslanian S . Determination of body composition in children and adolescents: validation of bioelectrical impedance with isotope dilution technique J Pediat Endocrinol Metab 1995 8: 103–109.

    Article  CAS  Google Scholar 

  9. Kim HK, Tanaka K, Nakadomo F, Watanabe K . Fat-free mass in Japanese boys predicted from bioelectrical impedance and anthropometric variables Eur J Clin Nutr 1994 48: 482–489.

    CAS  PubMed  Google Scholar 

  10. Kushner RF, Schoeller DA, Fjeld CR, Danford L . Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr 1992 56: 835–839.

    Article  CAS  PubMed  Google Scholar 

  11. Arpadi SM, Wang J, Cuff PA, Thornton J, Horlick M, Kotler DP, Pierson RN . Application of bioimpedance analysis for estimating body composition in prepubertal children infected with human immunodeficiency virus type 1 J Pediatr 1996 129: 755–757.

    Article  CAS  PubMed  Google Scholar 

  12. Deurenberg P, van der Kooy K, Leenen R, Weststrate JA, Seidell JC . Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study Int J Obes 1991 15: 17–25.

    CAS  PubMed  Google Scholar 

  13. Goran MI, Driscoll P, Johnson R, Nagy TR, Hunter G . Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children Am J Clin Nutr 1996 63: 299–305.

    Article  CAS  PubMed  Google Scholar 

  14. Gutin B, Litaker M, Islam S, Manos T, Smith C, Treiber F . Body-composition measurement in 9–11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis Am J Clin Nutr 1996 63: 287–292.

    Article  CAS  PubMed  Google Scholar 

  15. Nunez C, Gallagher D, Visser M, Pi-Sunyer FX, Wang Z, Heymsfield SB . Bioimpedance analysis: evaluation of leg-to-leg system based on pressure contact foot-pad electrodes Med Sci Sports Exercise 1997 29: 524–531.

    Article  CAS  Google Scholar 

  16. Tanner JM . Growth at Adolescence. Blackwell Scientific: Oxford 1962.

  17. Bland JM, Altman DG . Statistical methods for assessing agreement between two methods of clinical measurement Lancet 1986 1: 307–310.

    Article  CAS  PubMed  Google Scholar 

  18. Himes JH, Dietz WH . Guidelines for overweight in adolescent preventive services: recommendations from an expert committee. The Expert Committee on Clinical Guidelines for Overweight in Adolescent Preventive Services Am J Clin Nutr 1994 59: 307–316.

    Article  CAS  PubMed  Google Scholar 

  19. Hammer LD, Kraemer HC, Wilson DM, Ritter PL, Dornbusch SM . Standardized percentile curves of body-mass index for children and adolescents Am J Dis Child 1991 145: 259–263.

    CAS  PubMed  Google Scholar 

  20. Reilly JJ, Wilson J, McColl JH, Carmichael M, Durnin JV . Ability of bioelectrical impedance to predict fat free mass in prepubertal children Pediatr Res 1996 39: 176–179.

    Article  CAS  PubMed  Google Scholar 

  21. Rosner B, Prineas R, Loggie J, Daniels SR . Percentiles for body mass index in US children 5 to 17 years of age. [See comments] J Pediatr 1998 132: 211–222.

    Article  CAS  PubMed  Google Scholar 

  22. Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB . Body mass index as a measure of adiposity among children and adolescents: a validation study J Pediatr 1998 132: 204–210.

    Article  CAS  PubMed  Google Scholar 

  23. Roche AF, Siervogel RM, Chumlea WC, Webb P . Grading of body fatness from limited anthropometric data Am J Clin Nutr 1981 34: 2831–2838.

    Article  CAS  PubMed  Google Scholar 

  24. Ogle GD, Allen JR, Humphries IRJ, Wen Lu P, Briody JN, Morley K, Howman-Giles R, Cowell CT . Body-composition assessment by dual-energy x-ray absorptiometry in subjects aged 4–26 y Am J Clin Nutr 1995 61: 746–753.

    Article  CAS  PubMed  Google Scholar 

  25. Roche AF . Methodological considerations in the assessment of childhood obesity Ann NY Acad Sci 1993 699: 6–17.

    Article  CAS  PubMed  Google Scholar 

  26. Bedogni G, Bollea MR, Severi S, Trunfio O, Manzieri AM, Battistini N . The prediction of total body water and extracellular water from bioelectric impedance in obese children Eur J Clin Nutr 1997 51: 129–133.

    Article  CAS  PubMed  Google Scholar 

  27. Houtkooper LB, Lohman TG, Going SB, Howell WH . Why bioelectrical impedance should be used for estimating adiposity Am J Clin Nutr 1996 64 (Suppl): 436–448.

    Article  Google Scholar 

  28. Reilly JJ, Wilson J, Durnin JVGA . Determination of body composition from skinfold thickness: a validation study Arch Dis Child 1995 73: 305–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harsha DW, Bray GA . Body composition and childhood obesity Endocrinol Metab Clin N Am 1996 25: 871–885.

    Article  CAS  Google Scholar 

  30. Ellis KJ, Shypailo RJ, Pratt JA, Pond WG . Accuracy of dual-energy x-ray absorptiometry for body-composition measurements in children Am J Clin Nutr 1994 60: 660–665.

    Article  CAS  PubMed  Google Scholar 

  31. Pintauro SJ, Nagy TR, Duthie CM, Goran MI . Cross Calibration of fat and lean measurements by dual-energy X-ray absortiometry to pig carcass analysis in the pediatric body weight range Am J Clin Nutr 1996 63: 293–298.

    Article  CAS  PubMed  Google Scholar 

  32. Ellis KJ . Body composition of a young, multiethnic, male population Am J Clin Nutr 1997 66: 1323–1331.

    Article  CAS  PubMed  Google Scholar 

  33. Ellis KJ, Abrams AA, Wong WW . Body composition of a young, multiethnic female population Am J Clin Nutr 1997 65: 724–731.

    Article  CAS  PubMed  Google Scholar 

  34. Chinn S, Rona RJ, Gulliford MC, Hammond J . Weight-for-height in children aged 4–12 years. A new index compared to the normalized body mass index Eur J Clin Nutr 1992 46: 489–500.

    CAS  PubMed  Google Scholar 

  35. McLaren DS, Read WWC . Weight/length classification of nutritional status Lancet 1975 2: 219–221.

    Article  CAS  PubMed  Google Scholar 

  36. Cole TJ . A method for assessing age-standardised weight-for-height in children seen cross-sectionally Ann Hum Biol 1979 6: 249–268.

    Article  CAS  PubMed  Google Scholar 

  37. Elowsson P, Forslund AH, Mallmin H, Feuk U, Hansson I, Carlsten J . An evaluation of dual-energy x-ray absorptiometry and underwater weighing to estimate body composition by means of carcass analysis in piglets J Nutr 1998 128: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Wilson Sweet Trust for their financial support in providing a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WS Cutfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyrrell, V., Richards, G., Hofman, P. et al. Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children. Int J Obes 25, 273–278 (2001). https://doi.org/10.1038/sj.ijo.0801531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801531

Keywords

This article is cited by

Search

Quick links