Int J Sports Med 2010; 31(9): 644-650
DOI: 10.1055/s-0030-1255067
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Intermittent Hypoxia on Running Economy

M. Burtscher1 , H. Gatterer1 , M. Faulhaber1 , W. Gerstgrasser1 , K. Schenk2
  • 1Department of Sport Science, Medical Section,University of Innsbruck, Austria
  • 2 School of Sports Medicine,University of Verona,Italy
Further Information

Publication History

accepted after revision May 02, 2010

Publication Date:
29 June 2010 (online)

Abstract

We investigated the effects of two 5-wk periods of intermittent hypoxia on running economy (RE). 11 male and female middle-distance runners were randomly assigned to the intermittent hypoxia group (IHG) or to the control group (CG). All athletes trained for a 13-wk period starting at pre-season until the competition season. The IHG spent additionally 2 h at rest on 3 days/wk for the first and the last 5 weeks in normobaric hypoxia (15–11% FiO2). RE, haematological parameters and body composition were determined at low altitude (600 m) at baseline, after the 5th, the 8th and the 13th week of training. RE, determined by the relative oxygen consumption during submaximal running, (−2.3±1.2 vs. −0.3±0.7 ml/min/kg, P<0.05) and total running time (+1.0±0.9 vs. +0.4±0.5 min, P<0.05) changed significantly between the IHG and CG only during the first 5-wk period. Haematological and cardiorespiratory changes indicate that the improved RE was associated with decreased cardiorespiratory costs and greater reliance on carbohydrate. Intermittent hypoxia did not affect RE during the second 5-wk period. These findings suggest that the effects of intermittent hypoxia on RE strongly depend on the training phase.

References

  • 1 Birchard GF. Optimal hematocrit: Theory, regulation and implications.  Am Zool. 1997;  37 65-72
  • 2 Burtscher M, Förster H, Burtscher J. Superior endurance performance in aging mountain runners.  Gerontology. 2008;  54 268-271
  • 3 Burtscher M, Haider T, Domej W, Linser T, Gatterer H, Faulhaber M, Pocecco E, Ehrenburg I, Tkatchuk E, Koch R, Bernardi L. Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD.  Respir Physiol Neurobiol. 2009;  165 97-103
  • 4 Cerretelli P. Muscle energetics and ultrastructure in chronic hypoxia.  Respiration. 1992;  59 (S 02) 24-29
  • 5 Dill DB, Horvath SM, Dahms TE, Parker RE, Lynch JR. Hemoconcentration at altitude.  J Appl Physiol. 1969;  27 514-518
  • 6 Fulco CS, Rock PB, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful?.  Aviat Space Environ Med. 2000;  71 162-171
  • 7 Gore CJ, Hahn AG, Burge CM, Telford RD. VO2max and haemoglobin mass of trained athletes during high intensity training.  Int J Sports Med. 1997;  18 477-482
  • 8 Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA, Garnham AP, Roberts AD, Slater GJ, McKenna MJ. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency.  Acta Physiol Scand. 2001;  173 275-286
  • 9 Gore CJ, Hopkins WG. Counterpoint: Positive effects of intermittent hypoxia (live high:train low) on exercise performance are not mediated primarily by augmented red cell volume.  J Appl Physiol. 2005;  99 2055-2057
  • 10 Green HJ, Roy B, Grant S, Hughson R, Burnett M, Otto C, Pipe A, McKenzie D, Johnson M. Increases in submaximal cycling efficiency mediated by altitude acclimatization.  J Appl Physiol. 2000;  89 1189-1197
  • 11 Grover RF, Weil JV, Reeves JT. Cardiovascular adaptation to exercise at high altitude.  Exerc Sport Sci Rev. 1986;  14 269-302
  • 12 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 13 Haufe S, Wiesner S, Engeli S, Luft FC, Jordan J. Influences of normobaric hypoxia training on metabolic risk markers in human subjects.  Med Sci Sports Exerc. 2008;  40 1939-1944
  • 14 Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running.  J Sports Sci. 1996;  14 321-327
  • 15 Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners.  J Appl Physiol. 2004;  96 1800-1807
  • 16 Katayama K, Matsudo H, Ishida K, Mori S, Miyamura M. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency.  High Alt Med Biol. 2003;  4 291-304
  • 17 Katayama K, Sata K, Matsuo H, Ishida K, Iwasaki K, Miyamura M. Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes.  Eur J Appl Physiol. 2004;  92 75-83
  • 18 Levine BD, Stray Gundersen J. ”Living high-training low„: effect of moderate altitude acclimatization with low-altitude training on performance.  J Appl Physiol. 1997;  83 102-112
  • 19 Lucía A, Hoyos J, Pérez M, Santalla A, Chicharro JL. Inverse relationship between VO2max and economy/efficiency in world class cyclists.  Med Sci Sports Exerc. 2002;  34 2079-2084
  • 20 Lundby C, Calbet JA, Sander M, van Hall G, Mazzeo RS, Stray-Gundersen J, Stager JM, Chapman RF, Saltin B, Levine BD. Exercise economy does not change after acclimatization to moderate to very high altitude.  Scand J Med Sci Sports. 2007;  17 281-291
  • 21 Maher JT, Jones LG, Hartley LH. Effects of high-altitude exposure on submaximal endurance capacity of men.  J Appl Physiol. 1974;  37 895-898
  • 22 Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance. Can valid recommendations be given to runners and coaches based on current scientific knowledge?.  Sports Med. 2007;  37 857-880
  • 23 Neya M, Enoki T, Kumai Y, Sugoh T, Kawahara T. The effects of nightly normobaric hypoxia and high intensity training under intermittent normobaric hypoxia on running economy and hemoglobin mass.  J Appl Physiol. 2007;  103 828-834
  • 24 Ponsot E, Dufour SP, Zoll J, Doutrelau S, N’Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.  J Appl Physiol. 2006;  100 1249-1257
  • 25 Roberts AC, Reeves JT, Butterfield GE, Mazzeo RS, Sutton JR, Wolfel EE, Brooks GA. Altitude and beta-blockade augment glucose utilization during submaximal exercise.  J Appl Physiol. 1996;  80 605-615
  • 26 Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training.  J Sports Sci. 2004;  22 928-945
  • 27 Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA. Improved running economy in elite runners after 20 days of moderate simulated altitude exposure.  J Appl Physiol. 2004;  96 931-937
  • 28 Saunders PU, Telford RD, Pyne DB, Hahn AG, Gore CJ. Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure.  J Sci Med Sport. 2009;  12 67-72
  • 29 Schmidt W, Prommer N. Effects of various training modalities on blood volume.  Scand J Med Sci Sports. 2008;  18 (S 01) 57-69
  • 30 Schuler B, Thomsen JJ, Gassmann M, Lundby C. Timing the arrival at 2 340 m altitude for aerobic performance.  Scand J Med Sci Sports. 2007;  17 588-594
  • 31 Truijens MJ, Rodríguez FA, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners.  J Appl Physiol. 2008;  104 328-337
  • 32 Wehrlin JP, Zuest P, Hallén J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes.  J Appl Physiol. 2006;  100 1938-1945

Correspondence

Prof. Martin Burtscher

University of Innsbruck

Sport Science, Medical Section

Fürstenweg 185

6020 Innsbruck

Austria

Phone: +43/512/507 4496

Fax: +43/512/507 2656

Email: Martin.Burtscher@uibk.ac.at

    >