Int J Sports Med 2012; 33(05): 410-414
DOI: 10.1055/s-0031-1301317
Genetics & Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

Mitochondrial Macrohaplogroup Associated with Muscle Power in Healthy Adults

N. Fuku
1   Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
,
H. Murakami
2   Department of Health Promotion and Exercise, National Institute of Health and Nutrition, Tokyo, Japan
,
M. Iemitsu
3   Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
,
K. Sanada
3   Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
,
M. Tanaka
1   Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
,
M. Miyachi
2   Department of Health Promotion and Exercise, National Institute of Health and Nutrition, Tokyo, Japan
› Author Affiliations
Further Information

Publication History



accepted after revision 12 December 2011

Publication Date:
29 February 2012 (online)

Abstract

The present study was undertaken to examine the effect of mitochondrial haplogroups on aerobic and anaerobic performance phenotypes such as maximum oxygen consumption, muscle power, and muscle mass. We recruited 474 healthy Japanese individuals and measured their physical performance phenotypes such as peak oxygen uptake, muscle power, and muscle mass. The genotypes for 186 polymorphisms in the mitochondrial DNA were determined, and the haplotypes were classified into 2 macrohaplogroups (i. e., N and M) and 12 haplogroups (i. e., F, B, A, N9a, N9b, M7a, M7b, G1, G2, D4a, D4b, and D5). When we compared the 2 major Japanese macrohaplogroups, leg extension power (P=0.0395), leg extension power based on body weight (P=0.0343), and vertical jump performance (P=0.0485) were significantly higher in subjects with mitochondrial macrohaplogroup N than in those with macrohaplogroup M. However, peak oxygen uptake was similar between the 2 groups. When we analyzed the 12 haplogroups, all of the measured parameters were similar among them. In conclusion, mitochondrial macrohaplogroup N may be one of the determinant factors of anaerobic physical performance phenotype such as muscle power.

 
  • References

  • 1 Alexe G, Satya RV, Seiler M, Platt D, Bhanot T, Hui S, Tanaka M, Levine AJ, Bhanot G. PCA and clustering reveal alternate mtDNA phylogeny of N and M clades. J Mol Evol 2008; 67: 465-487
  • 2 Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457-465
  • 3 Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 1997; 12: 2076-2081
  • 4 Bouchard C, Daw EW, Rice T, Perusse L, Gagnon J, Province MA, Leon AS, Rao DC, Skinner JS, Wilmore JH. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc 1998; 30: 252-258
  • 5 Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc 2009; 41: 35-73
  • 6 Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature 1987; 325: 31-36
  • 7 Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E. Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion 2007; 7: 354-357
  • 8 Deason M, Scott R, Irwin L, Macaulay V, Fuku N, Tanaka M, Irving R, Charlton V, Morrison E, Austin K, Pitsiladis YP. Importance of mitochondrial haplotypes and maternal lineage in sprint performance among individuals of West African ancestry. Scand J Med Sci Sports 2011; [in press]
  • 9 Dionne FT, Turcotte L, Thibault MC, Boulay MR, Skinner JS, Bouchard C. Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training. Med Sci Sports Exerc 1991; 23: 177-185
  • 10 Dirksen RT. Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. Appl Physiol Nutr Metab 2009; 34: 389-395
  • 11 Dunbar SA. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 2006; 363: 71-82
  • 12 Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol 1991; 70: 357-362
  • 13 Fuku N, Nishigaki Y, Tanaka M. Mitochondrial haplogroup N9a confers resistance against metabolic syndrome and type 2 diabetes mellitus in Asian individuals. Asia Pac J Endocrinol 2009; 1: 65-73
  • 14 Fuku N, Oshida Y, Takeyasu T, Guo LJ, Kurata M, Yamada Y, Sato Y, Tanaka M. Mitochondrial ATPase subunit 6 and cytochrome B gene polymorphisms in young obese adults. Biochem Biophys Res Commun 2002; 290: 1199-1205
  • 15 Fuku N, Park KS, Yamada Y, Nishigaki Y, Cho YM, Matsuo H, Segawa T, Watanabe S, Kato K, Yokoi K, Nozawa Y, Lee HK, Tanaka M. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet 2007; 80: 407-415
  • 16 Gando Y, Kawano H, Yamamoto K, Sanada K, Tanimoto M, Oh T, Ohmori Y, Miyatani M, Usui C, Takahashi E, Tabata I, Higuchi M, Miyachi M. Age and cardiorespiratory fitness are associated with arterial stiffening and left ventricular remodelling. J Hum Hypertens 2010; 24: 197-206
  • 17 Guo LJ, Oshida Y, Fuku N, Takeyasu T, Fujita Y, Kurata M, Sato Y, Ito M, Tanaka M. Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion 2005; 5: 15-33
  • 18 Harriss DJ, Atkinson G. Update – Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
  • 19 Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature 2000; 408: 708-713
  • 20 Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, Kato N, Miyawaki A, Kato T. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2006; 2: e128
  • 21 Lannergren J, Westerblad H, Bruton JD. Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions. J Muscle Res Cell Motil 2001; 22: 265-275
  • 22 Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002; 418: 797-801
  • 23 Marcuello A, Martinez-Redondo D, Dahmani Y, Casajus JA, Ruiz-Pesini E, Montoya J, Lopez-Perez MJ, Diez-Sanchez C. Human mitochondrial variants influence on oxygen consumption. Mitochondrion 2009; 9: 27-30
  • 24 Mikami E, Fuku N, Takahashi H, Ohiwa N, Scott RA, Pitsiladis YP, Higuchi M, Kawahara T, Tanaka M. Mitochondrial haplogroups associated with elite Japanese athlete status. Br J Sports Med. 2011 45. 1179-1183
  • 25 Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S. Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol 2001; 90: 2439-2444
  • 26 Murakami H, Ota A, Simojo H, Okada M, Ajisaka R, Kuno S. Polymorphisms in control region of mtDNA relates to individual differences in endurance capacity or trainability. Jpn J Physiol 2002; 52: 247-256
  • 27 Reed T, Fabsitz RR, Selby JV, Carmelli D. Genetic influences and grip strength norms in the NHLBI twin study males aged 59–69. Ann Hum Biol 1991; 18: 425-432
  • 28 Sanada K, Miyachi M, Tabata I, Suzuki K, Yamamoto K, Kawano H, Usui C, Higuchi M. Differences in body composition and risk of lifestyle-related diseases between young and older male rowers and sedentary controls. J Sports Sci 2009; 27: 1027-1034
  • 29 Schmiedel J, Jackson S, Schafer J, Reichmann H. Mitochondrial cytopathies. J Neurol 2003; 250: 267-277
  • 30 Scott RA, Fuku N, Onywera VO, Boit M, Wilson RH, Tanaka M, WHG, Pitsiladis YP. Mitochondrial haplogroups associated with elite Kenyan athlete status. Med Sci Sports Exerc 2009; 41: 123-128
  • 31 Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001; 37: 153-156
  • 32 Tanaka M, Cabrera VM, Gonzalez AM, Larruga JM, Takeyasu T, Fuku N, Guo LJ, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Hattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H. Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res 2004; 14: 1832-1850
  • 33 Tanaka M, Fuku N, Nishigaki Y, Matsuo H, Segawa T, Watanabe S, Kato K, Yokoi K, Ito M, Nozawa Y, Yamada Y. Women with mitochondrial haplogroup N9a are protected against metabolic syndrome. Diabetes 2007; 56: 518-521
  • 34 Torroni A, Richards M, Macaulay V, Forster P, Villems R, Norby S, Savontaus ML, Huoponen K, Scozzari R, Bandelt HJ. mtDNA haplogroups and frequency patterns in Europe. Am J Hum Genet 2000; 66: 1173-1177
  • 35 Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004; 2: e294
  • 36 Yoshiga CC, Higuchi M, Oka J. Rowing prevents muscle wasting in older men. Eur J Appl Physiol 2002; 88: 1-4