Int J Sports Med 2000; 21(7): 518-523
DOI: 10.1055/s-2000-7409
Orthopedics and Clinical Science
Georg Thieme Verlag Stuttgart · New York

Compressive and Shear ForceGenerated in the Lumbar Spine of Female Rowers

F.  L. Morris1 , R.  M. Smith2 , W.  R. Payne3 , M.  A. Galloway4 , J.  D. Wark1
  • 1 Department of Medicine, University of Melbourne, Melbourne, Australia
  • 2 Department of Biomechanics, Faculty of Health Sciences, University of Sydney, Australia
  • 3 School of Human Movement and Sports Science, University of Ballarat, Australia
  • 4 Elite Sport Unit, New South Wales Academy of Sport, Australia
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Rowers have and accrue greater lumbar spine bone mineral density (BMD) associated with mechanical loading produced during rowing. The aim of this study was to estimate the mechanical loading generated at the lumbar spine (LS) that is apparently providing an osteogenic benefit. The cohort comprised 14 female rowers (average age: 19.7 yrs; height: 170.9 cm, weight: 59.5 kg) and 14 female matched controls (average age: 20.9 m yrs; height: 167.5 cm; weight: 58.1 kg). BMD was assessed using the Hologic QDR 2000+ bone densitometer, indicating higher lumbar spine BMD in the rowers compared to the control subjects (1069 ± 0.1 vs. 1027 ± 0.1 g/cm2). No significant difference existed for BMD at any other site. All rowers performed a six-minute simulated race on a Concept II rowing ergometer. Mechanical loading generated at the lumbar spine during this task was assessed using a two-dimensional model of the spine, enabling the calculation of the compressive and shear forces at L4/L5. The shear force was the joint reaction force perpendicular to the spine at the L4/L5 joint. Peak compressive and shear force at the lumbar spine of the rowers were 2694 ± 609 (N) and 660 ± 117 (N), respectively. Peak compressive force at the LS relative to body weight was 4.6 times body weight. The literature would suggest that forces of this magnitude, generated at the LS during maximal rowing, may be contributing to the site specific higher LS BMD found in the rowers.

References

  • 1 Angus R M, Sambrook P N, Pocock N. A simple method for assessing calcium intake in caucasian women.  J Am Diabetics Assoc. 1989;  89 209-214
  • 2 Bass S, Pearce G, Bradney M, Hendrich E, Delmas P D, Harding A, Seeman E. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts.  J Bone Miner Res. 1998;  13 500-507
  • 3 Bennell K L, Malcolm S A, Khan K M, Thomas S A, Reid S J, Brukner P D, Ebeling P R, Wark J D. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study.  Bone. 1997;  20 477-484
  • 4 Capozzo A. Compressive loads of the lumbar vertebral column during normal levels of walking.  J of Orthopedic Res. 1993;  1 292-301
  • 5 Chaffin D B, Anderson G BJ. Occupational Biomechanics. New York; John Wiley and Sons 1984
  • 6 Cohen P, Millett P J, Mist B, Laskey M A, Rushton N. Effect of exercise training programme on bone mineral density in novice college rowers.  Br J of Sports Med. 1995;  29 85-88
  • 7 Conroy B P, Kraemer W, Maresh C, Fleck S, Stone M, Fry A, Miller P, Dalsky G. Bone mineral density in elite junior olympic weightlifters.  Med Sci in Sports and Ex. 1993;  25 1103-1109
  • 8 Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent.  J Bone Min Res. 1996;  11 218-225
  • 9 McGill S M, Patt N, Norman R W. Measurement of the trunk musculature of active males using CT scan radiography: implications for force and moment generating capacity about the L4/L5 joint.  J of Biomech. 1998;  21 329-341
  • 10 McGill S M, Norman R W. Reassessment of the role of intra-abdominal pressure in spinal compression.  Ergonomics. 1987;  30 1565-1588
  • 11 Morris F L, Naughton G, Gibbs J, Carlson J, Wark J. Prospective ten-month exercise intervention on premenarcheal girls: positive effects on bone and lean mass.  J Bone Min Res. 1997;  12 1453-1462
  • 12 Morris F L, Payne W P, Wark J D. The impact of intense training on endogenous estrogen and progesterone production and bone mineral acquisition in adolescent rowers.  Osteo Int. 1999;  (in press)
  • 13 Panzer V P, Wood G A, Mason B R. Lower extremity loads in landings of elite gymnastics. In: de Groot G, Hollander P, Huijing P, van Ingen Schenau (eds) Biomechanics XI-B. Amsterdam; Free University Press 1988: 727-735
  • 14 Robinson T, Snow-Harter C, Taffee D, Gillis D, Shaw J M. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea.  J Bone and Min Res. 1995;  10 26-35
  • 15 Secher N H, Esperson M, Binkhortst R A, Andersen P A, Rube N. Aerobic power at the onset of maximal exercise.  Scand J of Sports Sci. 1982;  4 12-16
  • 16 Synder A, Wenderoth M, Johnston C, Hui S. Bone mineral content of elite lightweight amenorrheic oarswomen.  Hum Biol. 1986;  58 863-869
  • 17 Wolman R L. Bone mineral density levels in elite female athletes.  Ann Rheumatic Diseases. 1990;  49 1013-1026

Dr. Fiona L. Morris

School of Biomedical and Sport Science Edith Cowan University

100 Joondalup drive Joondalup Western Australia Australia, 6027

Phone: Phone:+ 618 (9400) 5012

Fax: Fax:+ 618 (9400) 5717

Email: E-mail:f.morris@cowan.edu.au

    >