Int J Sports Med 2003; 24(2): 118-124
DOI: 10.1055/s-2003-38203
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

The Effect of Pre-Exercise Cooling on High Intensity Running Performance in the Heat

J.  B.  Mitchell1 , B.  K.  McFarlin1 , J.  P.  Dugas1
  • 1Exercise Physiology Laboratory, Texas Christian University, Fort Worth, Texas, USA
Further Information

Publication History



Accepted after revision: July 30, 2002

Publication Date:
01 April 2003 (online)

Abstract

The purpose of this study was to determine the effect of pre-exercise cooling on high intensity, moderate duration running performance and thermoregulatory responses in a hot environment (38 °C, 40 %RH). On separate days, 11 male subjects completed two treadmill runs to exhaustion at 100 % of maximal aerobic power with (CL) and without (CT) pre-exercise cooling. Cooling consisted of 20 min of standing rest in a 22 °C environment with fan cooling (4.0 m × sec-1) and water spraying (50 ml × min-1) applied to both anterior and posterior body surfaces. Core temperature (Tc) was determined with an esophageal Tes probe, and skin temperatures (Tsk) were measured using surface thermistors positioned at four sites. Finger prick blood samples were taken before and after exercise for the determination of blood lactate. Heart rates and ratings of thermal sensations and comfort were also recorded. Time to exhaustion was significantly shorter in the CL condition (368.9 ± 56.2) compared to the CT condition (398.8 ± 55.5sec). Peak Tes (37.51 ± 0.57 vs. 38.56 ± 0.30 °C for CL and CT, respectively), Tsk (34.18 ± 1.22 vs. 36.15 ± 0.70 °C for CL and CT, respectively), rates of heat gain (0.20 ± 0.05 vs. 0.28 ± 0.05 °C × min-1 for CL and CT, respectively), and net heat storage (238.4 ± 109.6 vs. 531.9 ± 78.3 kJ for CL and CT, respectively) were all lower in the CL compared to CT throughout the treadmill runs. There were no differences in lactate accumulation between the two conditions. Based on these data, it can be concluded that pre-exercise cooling influences thermoregulatory responses during high intensity, moderate duration exercise; however, performance is impaired compared to a control trial in which no cooling procedures were employed.

References

  • 1 ACSM . Position stand heat and cold illnesses during distance running.  Med Sci Sports Exerc. 1996;  28 i-x
  • 2 Bassett D R, Nagle F J, Mookerjee S, Darr K C, Ng A V, Voss S G, Napp J P. Thermoregulatory responses to skin wetting during prolonged treadmill running.  Med Sci Sports Exerc. 1987;  19 28-32
  • 3 Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscle.  Acta Physiol Scand. 1979;  107 33-37
  • 4 Bergh U, Ekblom B. Physical performance and peak aerobic power at different body temperatures.  J Appl Physiol. 1979;  46 885-889
  • 5 Blomstrand E, Bergh U, Essen-Gustavsson B, Ekblom B. Influence of low muscle temperatures on muscle metabolism during intense dynamic exercise.  Acta Physiol Scand. 1984;  120 229-236
  • 6 Booth J, Wilmore B R, Macdonald A D, Zeyl A, Mcghee S, Calvert D, Marino F E, Storlien L H, Taylor N A. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat. Eur.  J Appl Physio. 2001;  84 587-590
  • 7 Booth J, Marino F, Ward J J. Improved running performance in hot humid conditions following whole body precooling.  Med Sci Sports Exerc. 1997;  29 943-947
  • 8 Crowley G C, Garg A, Lohn M S, van Someren N, Wade A J. Effects of cooling the legs on performance in a standard Wingate anaerobic power test.  Br J Sp Med. 1991;  25 200-203
  • 9 Davies C TM, Brotherhood J R, Deidifard E. Temperature regulation during severe exercise with some observations on effects of skin wetting.  J Appl Physiol. 1976;  41 772-776
  • 10 de Bruyn-Prevost P, Lefebvre F. The effects of various warming up intensities and durations during a short maximal anaerobic exercise.  Eur J Appl Physiol. 1980;  43 101-107
  • 11 Drust B, Cable N T, Reilly T. Investigation of the effects of pre-cooling on the physiological responses to soccer-specific intermittent exercise.  Eur J Appl Physiol. 2000;  81 11-17
  • 12 Fox S H, Dubois A B. The effect of evaporative cooling of respiratory protective devices on skin temperature, thermal sensation, and comfort.  Am Ind Hyg Assoc. 1993;  54 705-712
  • 13 Galloway S D, Maughan R J. Effects of ambient temperature on the capacity to perform prolonged exercise in man.  Med Sci Sports Exerc. 1997;  29 1240-1249
  • 14 Heising M, Werner J. Control of sweating in man after work induced thermal load and symmetrically applied cooling.  Eur J Appl Physiol. 1987;  56 608-614
  • 15 Hessemer V, Langusch D, Brück K, Bodeker R H, Breidenbach T. Effect of slightly lowered body temperatures on endurance performance in humans.  J Appl Physiol. 1984;  57 1731-1737
  • 16 Jackson A S, Pollock M L. Generalized equations for predicting body density in men.  Nutrition. 1978;  40 497-504
  • 17 Kay D, Taffe D R, Marino F E. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions.  J Sports Sci. 1999;  17 937-944
  • 18 Kozlowski S, Brzensinska Z, Kruk B, Kaciuba-Uscilko H, Greenleaf J E, Nazar K. Exercise hyperthermia as a factor limiting physical performance: temperature effect on muscle metabolism.  J Appl Physiol. 1985;  59 766-773
  • 19 Kruk B, Kaciuba-Uscilko H, Nazar K, Greenleaf J E, Kozlowski S. Hypothalamic, rectal and muscle temperatures in exercising dogs: effect of cooling.  J Appl Physiol. 1985;  58 1444-1448
  • 20 Lee D T, Haymes E M. Exercise duration and thermoregulatory responses after whole body cooling.  J Appl Physiol. 1995;  79 1971-1976
  • 21 Lowry O H, Passonneau J V. A flexible system of enzymatic analysis. New York; Academic Press 1972: 175-200
  • 22 Marsh D, Sleivert G. Effect of precooling on high intensity cycling performance.  Br J Sports Med. 1999;  33 393-397
  • 23 Mitchell J B, Schiller E R, Miller J R, Dugas J P. The influence of different cooling methods on thermoregulatory responses before and after intermittent exercise in the heat.  J Str Cond Rsch. 2001;  15 247-254
  • 24 Nadel E R. Control of sweating rate while exercising in the heat.  Med Sci Sports Exerc. 1979;  11 31-35
  • 25 Nielsen B. Olympics in Atlanta: a fight against physics.  Med Sci Sports and Exerc. 1996;  28 665-668
  • 26 Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans.  J Appl Physiol. 2001;  91 1055-1060
  • 27 Nybo L, Jensen T, Nielsen B, Gonzalez-Alonso J. Effects of marked hyperthermia with and without dehydration on VO2 kinetics during intense exercise.  J Appl Physiol. 2001;  90 1057-1064
  • 28 Olschewski H, Brück K. Thermoregulatory, cardiovascular, and muscular factors related to exercise after precooling.  J Appl Physiol. 1988;  64 803-811
  • 29 Rowell L B, Murray J A, Brengelmann G L, Kraning II K K. Human cardiovascular adjustments to rapid changes in skin temperature during exercise.  Circulation Research. 1969;  25 711-724
  • 30 Sawka M N, Pandolf K B. Effects of body water loss on physiological function and exercise performance. In: Gisolfi CV, and Lamb DR (eds) Perspectives in exercise science and sports medicine: Fluid homeostasis during exercise. Carmel, IN, Benchmark 1990 3: 1-38
  • 31 Sawka M N, Young A J, Cadarette B S, Levine L, Pandolf K B. Influence of heat stress and acclimation on maximal aerobic power.  Eur J Appl Physiol. 1985;  53 294-298
  • 32 Schmidt V, Brück K. Effect of a precooling maneuver on body temperature and exercise performance.  J Appl Physiol. 1981;  50 772-778
  • 33 Webb P. Afterdrop of body temperature during rewarming: an alternative explanation.  J Appl Phsyiol. 1986;  60 385-390

J. B. Mitchell, Ph. D.

P.O. Box 297 730 · Texas Christian University

Fort Worth · Texas 76129 · USA ·

Phone: (817) 257-7665

Fax: (817) 257-7702

Email: J.Mitchell@TCU.EDU

    >