Exp Clin Endocrinol Diabetes 2007; 115(7): 417-422
DOI: 10.1055/s-2007-981660
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York

The Regulation of Adiponectin Receptors Expression by Acute Exercise in Mice

H. Huang 1 , K. T. Iida 1 , H. Sone 2 , R. Ajisaka 1
  • 1Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
  • 2Faculty of Human Life and Environmental Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
Further Information

Publication History

received 9.10.2006 first decision 8.11.2006

accepted 29.12.2006

Publication Date:
23 July 2007 (online)

Abstract

Adiponectin is an adipocyte-derived factor that plays a pivotal role in lipid and glucose metabolism. Recently, two types of adiponectin receptors (AdipoR1 and AdipoR2) were identified. While, although physical exercise is useful for improving insulin sensitivity, the effect of physical exercise on adiponectin and adiponectin receptors are still unclear. In present study, we investigated whether acute exercise affects the plasma adiponectin concentration and expression of adiponectin receptor in skeletal muscle and liver in healthy mice C57BL/6. Following an acute exercise, plasma glucose, insulin, FFA, and adiponectin were measured. The mRNA levels of AdipR1 and AdipoR2 were also analyzed. Although acute exercise did not significantly change plasma adiponectin concentration at 2 hours or 18 hours after the exercise compared with control group, the expression levels of AdipoR1 significantly increased in both skeletal muscle (2H: 1.2-fold, p=0.0423, 18H: 1.4-fold, p=0.0006) and liver (2H: 1.3-fold, p=0.0448) compared with control group. In contrast, the level of AdipoR2 mRNA was decreased in skeletal muscle (18H: 0.8-fold, p=0.027) and liver (2H: 0.9-fold, p=0.1551) compared with control group. Additionally, the transcription factor Foxo1 mRNA expression level was also significantly increased in skeletal muscle (2H: 10-fold, p=0.0001, 18H: 3-fold, p=0.0424) and liver (2H: 2-fold, p=0.002, 18H: 2-fold, p=0.0014) compared with control group by the acute exercise. These findings suggest that acute exercise affects the expression level of adiponectin receptors, and an increase of Foxo1 expression might be relative to regulate adiponectin receptors.

References

  • 1 Altomonte J, Harbaran S, Richter A, Dong H. Fat depot-specific expression of adiponectin is impaired in Zucker fatty rats.  Matebolism. 2003;  52 958-963
  • 2 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 3 Bernstein EL, Koutkia P, Ljungquist K, Breu J, Canavan B, Grinspoon S. Acute regulation of adiponectin by free fatty acids.  Metabolism. 2004;  53 790-793
  • 4 Boudou P, Sobngwi E, Mauvais-Jarvis F, Vexiau P, Gautier JF. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men.  Eur J Endocrinol. 2003;  149 421-424
  • 5 Camus G, Pincemail J, Ledent M, Juchmes-Ferir A, Lamy M, Deby-Dupont G, Deby C. Plasma levels of polymorphonuclear elastase and myeloperoxidase after uphill walking and downhill running at similar energy cost.  Int J Sports Med. 1992;  13 443-446
  • 6 Dufaux B, Order U. Plasma elastase-α1-antitrypsin, neopterin, tumor necrosis factor, and soluble interleulin-2 receptor after prolonged exercise.  Int J Sports Med. 1989;  10 434-438
  • 7 Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial.  Jama. 2003;  289 1799-1804
  • 8 Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, Sweeney G. Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts.  J Mol Endocrinol. 2005;  35 465-476
  • 9 Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.  Proc Natl Acad Sci USA. 2001;  98 2005-2010
  • 10 Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity.  Diabetes. 1999;  48 839-847
  • 11 Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity.  Annu Rev Med. 1998;  49 235-261
  • 12 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 13 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Bio Chem. 1996;  271 10697-10703
  • 14 Hulver MW, Zheng D, Tanner CJ, Houmard JA, Kraus WE, Slentz CA, Sinha MK, Pories WJ, MacDonald KG, Dohm GL. Adiponectin is not altered with exercise training despite enhanced insulin action.  Am J Physiol Endocrinol Metab. 2002;  283 E861-E865
  • 15 Inukai K, Nakashima Y, Watanabe M, Takata N, Sawa T, Kurihara S, Awata T, Katayama S. Regulation of adiponectin receptor gene expression in diabetic mice.  Am J Physiol Endocrinol Metab. 2005;  288 E876-E882
  • 16 Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors.  Endocr Rev. 2005;  26 439-451
  • 17 Kraemer RR, Aboudehen KS, Carruth AK, Durand RT, Acevedo EO, Hebert EP, Johnson LG, Castracane VD. Adiponectin responses to continuous and progressively intense intermittent exercise.  Med Sci Sports Exerc. 2003;  35 1320-1325
  • 18 Kriketos AD, Gan SK, Poynten AM, Furler SM, Chisholm DJ, Campbell LV. Exercise increases adiponectin levels and insulin sensitivity in humans.  Diabetes Care. 2004;  27 629-630
  • 19 Lambert EV, Hawley JA, Goedecke J, Noakes TD, Dennis SC. Nutritional strategies for promoting fat utilization and delaying the onset of fatigue during prolonged exercise.  J Sports Sci. 1997;  15 315-324
  • 20 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 21 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8 731-737
  • 22 Mora S, Pessin JE. An adipocentric view of signaling and intracellular trafficking.  Diabetes Metab Res Rev. 2002;  18 345-356
  • 23 Morozov VI, Tsyplenkov PV, Golberg ND, Kalinski MI. The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats.  Eur J Appl Physiol. 2006;  97 716-722
  • 24 Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression.  J Clin Invest. 2001;  108 1359-1367
  • 25 Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway.  J Biol Chem. 1999;  274 15982-15985
  • 26 Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma.  J Biochem (Tokyo). 1996;  120 803-812
  • 27 Punyadeera C, Zorenc AHG, Koopman R, MacAinch AJ, Smit E, Manders R, Keizer HA, Cameron-Smith D, Loon LJC van. The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle.  Eur J Endocrinol. 2005;  152 427-436
  • 28 Ryan AS, Nicklas B, Berman DM, Elahi D. Adiponectin levels do not change with moderate dietary induced weight loss and exercise in obese postmenopausal women.  Int J Obes Relat Metab Disord. 2003;  27 1066-1071
  • 29 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 26746-26749
  • 30 Staiger H, Haring HU. Adipocytokines: fat-derived humoral mediators of metabolic homeostasis.  Exp Clin Endocrinol Diabetes. 2005;  113 67-79
  • 31 Staiger H, Tschritter O, Kausch C, Lammers R, Stumvoll M, Haring HU. Human serum adiponectin levels are not under shout-term negative control by free fatty acids in vivo.  Horm Metab Res. 2002;  34 601-603
  • 32 Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, Kamon J, Kobayashi M, Suzuki R, Hara K, Kubota N, Terauchi Y, Froguel P, Nakae J, Kasuga M, Accili D, Tobe K, Ueki K, Nagai R, Kadowaki T. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity.  J Biol Chem. 2004;  279 30817-30822
  • 33 Loon LJ Van , Koopman R, Stegen JH, Wagenmakers AJ, Keizer HA, Saris WH. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state.  J Physiol. 2003;  553 611-625
  • 34 Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, Uchida S, Tsuchida A, Takekawa S, Kadowaki T. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1.  Endocrinology. 2005;  146 790-796
  • 35 Wojtaszewski JF, Hansen BF, Gade, Kiens B, Markuns JF, Goodyear LJ, Richter EA. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle.  Diabetes. 2000;  49 325-331
  • 36 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2002;  7 941-946
  • 37 Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizu T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.  Nature. 2003;  423 762-769
  • 38 Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin.  J Clin Endocrinol Metab. 2001;  86 3815-3819
  • 39 Yatagai T, Nishida Y, Nagasaka S, Nakamura T, Tokuyama K, Shindo M, Tanaka H, Ishibashi S. Relationship between exercise training-induced increase in insulin sensitivity and adiponectinemia in healthy men.  Endocr J. 2003;  50 233-238
  • 40 Yokoyama H, Emoto M, Araki T, Fujiwara S, Motoyama K, Morioka T, Koyama H, Shoji T, Okuno Y, Nishizawa Y. Effect of aerobic exercise on plasma adiponectin levels and insulin resistance in type 2 diabetes.  Diabetes Care. 2004;  27 1756-1758

Correspondence

H. Huang

Graduate School of Comprehensive Human Sciences

University of Tsukuba

1-1-1 Tennodai

Tsukuba-shi

305-8575 Ibaraki

Japan

Fax: +81/298/53 56 00 (83 62)

Email: koukohh@med.taiiku.tsukuba.ac.jp

    >