Int J Sports Med 2008; 29(11): 906-912
DOI: 10.1055/s-2008-1038377
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Volume vs. Intensity in the Training of Competitive Swimmers

O. Faude1 , 2 , T. Meyer1 , 2 , J. Scharhag1 , F. Weins1 , A. Urhausen3 , W. Kindermann1
  • 1Institute of Sports and Preventive Medicine, University of Saarland, Saarbrücken, Germany
  • 2Institute of Sports Medicine, University Paderborn, Paderborn, Germany
  • 3Center of Locomotor System, Sports Medicine and Prevention, Hospital Center of Luxembourg, Luxembourg, Luxembourg
Further Information

Publication History

accepted after revision January 13, 2008

Publication Date:
17 April 2008 (online)

Abstract

The present study aimed at comparing a high-volume, low-intensity vs. low-volume, high-intensity swim training. In a randomized cross-over design, 10 competitive swimmers performed two different 4-week training periods, each followed by an identical taper week. One training period was characterized by a high-training volume (HVT) whereas high-intensity training was prevalent during the other program (HIT). Before, after two and four weeks and after the taper week subjects performed psychometric and performance testing: profile of mood states (POMS), incremental swimming test (determination of individual anaerobic threshold, IAT), 100 m and 400 m. A small significant increase in IAT was observed after taper periods compared to pre-training (+ 0.01 m/s; p = 0.01). Maximal 100-m and 400-m times were not significantly affected by training. The POMS subscore of “vigor” decreased slightly after both training periods (p = 0.06). None of the investigated parameters showed a significant interaction between test-time and training type (p > 0.13). Nearly all (83 %) subjects swam personal best times during the 3 months after each training cycle. It is concluded that, for a period of 4 weeks, high-training volumes have no advantage compared to high-intensity training of lower volume.

References

  • 1 Beneke R, Hütler M, Leithäuser R M. Maximal lactate-steady-state independent of performance.  Med Sci Sports Exerc. 2000;  32 1135-1139
  • 2 Costill D L, Flynn M G, Kirwan J P, Houmard J A, Mitchell J B, Thomas R, Park S H. Effects of repeated days of intensified training on muscle glycogen and swimming performance.  Med Sci Sports Exerc. 1988;  20 249-254
  • 3 Costill D L, Thomas R, Robergs R A, Pascoe D, Lambert C, Barr S, Fink W J. Adaptations to swimming training: influence of training volume.  Med Sci Sports Exerc. 1991;  23 371-377
  • 4 Fry R W, Morton A R, Garcia-Webb P, Crawford G P, Keast D. Biological responses to overload training in endurance sports.  Eur J Appl Physiol. 1992;  64 335-344
  • 5 Halson S L, Bridge M W, Meeusen R, Busschaert B, Gleeson M, Jones D A, Jeukendrup A E. Time course of performance changes and fatigue markers during intensified training in trained cyclists.  J Appl Physiol. 2002;  93 947-956
  • 6 Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J. Aerobic high-intensity intervals improve V˙O2max more than moderate training.  Med Sci Sports Exerc. 2007;  39 665-671
  • 7 Jeukendrup A E, Hesselink M KC, Snyder A C, Kuipers H, Keizer H A. Physiological changes in male competitive cyclists after two weeks of intensified training.  Int J Sports Med. 1992;  13 534-541
  • 8 Kubukeli Z N, Noakes T D, Dennis S C. Training techniques to improve endurance exercise performances.  Sports Med. 2002;  32 489-509
  • 9 Laursen P B, Jenkins D G. The scientific basis for high-intensity interval training – optimising training programmes and maximising performance in highly trained endurance athletes.  Sports Med. 2002;  32 53-73
  • 10 Lehmann M, Gastmann U, Petersen K G, Bachl N, Seidel A, Khalaf A N, Fischer S, Keul J. Training – overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners.  Br J Sports Med. 1992;  26 233-242
  • 11 McLellan T M, Jacobs I. Reliability, reproducibility and validity of the individual anaerobic threshold.  Eur J Appl Physiol. 1993;  67 125-131
  • 12 Meeusen R, Duclos M, Gleeson M, Rietjens G, Steinacker J, Urhausen A. Prevention, diagnosis and treatment of the overtraining syndrome. ECSS Position Statement “Task Force”.  Eur J Sport Sci. 2006;  6 1-14
  • 13 Meyer T, Faude O, Urhausen A, Scharhag J, Kindermann W. Different effects of two regeneration regimens on immunological parameters in cyclists.  Med Sci Sports Exerc. 2004;  36 1743-1749
  • 14 Meyer T, Lucía A, Earnest C P, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters – theory and application.  Int J Sports Med. 2005;  26 S38-S48
  • 15 Montpetit R R, Duvallet A, Cazorla G, Smith H. The relative stability of maximal aerobic power in elite swimmers and its relationship to training performance.  J Swim Res. 1987;  3 15-18
  • 16 Mujika I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review.  Int J Sports Med. 1998;  19 439-446
  • 17 Mujika I, Busso T, Geyssant A, Chatard J C, Barale F, Lacoste L. Training content and its effects on performance in 100 and 200 m swimmers. Troup JP, Hollander AP, Strasse D Biomechanics and Medicine in Swimming VII. London; E & FN Spon 1996: 201-207
  • 18 O'Connor P J, Morgan W P, Raglin J S. Psychobiologic effects of 3d of increased training in female and male swimmers.  Med Sci Sports Exerc. 1991;  23 1055-1061
  • 19 Raglin J S, Morgan W P, O'Connor P J. Changes in mood states during training in female and male college swimmers.  Int J Sports Med. 1991;  12 585-589
  • 20 Rietjens G J, Kuipers H, Adam J J, Saris W H, van Breda E, van Hamont D, Keizer H A. Physiological, biochemical and psychological markers of strenuous training-induced fatigue.  Int J Sports Med. 2005;  26 16-26
  • 21 Ryan R, Coyle E F, Quick R W. Blood lactate profile throughout a training season in elite female swimmers.  J Swim Res. 1990;  6 5-10
  • 22 Sharp R L. Physiology of swimming. Garret WE Jr, Kirkendall DT Exercise and Sport Science. Philadelphia; Lippincott Williams & Wilkins 2000: 895-904
  • 23 Simon G. Lactate for aerobic and anaerobic performance diagnosis in swimming. [Laktat zur aeroben und anaeroben Leistungsdiagnostik im Schwimmen.] Clasing D, Weicker H, Böning D Stellenwert der Laktatbestimmung in der Leistungdiagnostik. Stuttgart, Jena, New York; Gustav Fischer Verlag 1994: 81-87 [German]
  • 24 Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate.  Int J Sports Med. 1982;  3 105-110
  • 25 Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold.  Int J Sports Med. 1981;  2 160-165
  • 26 Trappe S W. Metabolic demands for swimming. Troup JP, Hollander AP, Strasse D Biomechanics and Medicine in Swimming VII. London; E & FN Spon 1996: 127-134
  • 27 Urhausen A, Coen B, Weiler B, Kindermann W. Individual anaerobic threshold and maximum lactate steady state.  Int J Sports Med. 1993;  14 134-139

Dr. PhD Oliver Faude

University Paderborn
Institute of Sports Medicine

Warburger Str. 100

33098 Paderborn

Germany

Phone: + 49 (0) 52 51 60 35 87

Fax: + 49 (0) 52 51 60 31 88

Email: oliver.faude@uni-paderborn.de

    >