Skip to main content
Log in

In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) imaging techniques and a custom MR-compatible exercise bicycle were used to measure, in vivo, the effects of exercise on hemodynamic conditions in the abdominal aorta of eleven young, healthy subjects. Heart rate increased from 73±6.2 beats/min at rest to 110±8.8 beats/min during exercise (p < 0.0001). The total blood flow through the abdominal aorta increased from 2.9±0.6 L/min at rest to 7.2±1.4 L/min during exercise (p < 0.0005) while blood flow to the digestive and renal circulations decreased from 2.1±0.5 L/min at rest to 1.6±0.7 L/min during exercise (p < 0.01). Infrarenal blood flow increased from 0.9±0.4 L/min at rest to 5.6±1.1 L/min during exercise (p < 0.0005). Wall shear stress increased in the supraceliac aorta from 3.5±0.8 dyn/cm2 at rest to 6.2±0.5 dyn/cm2 during exercise (p < 0.0005) and increased in the infrarenal aorta from 1.3±0.8 dyn/cm2 at rest to 5.2±1.3 dyn/cm2 during exercise (p < 0.0005). © 2002 Biomedical Engineering Society.

PAC2002: 8719Uv, 8761-c

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Caro, C. G., J. M. Fitz–Gerald, and R. C. Schroter. Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. London, Ser. B: Biological Sciences 177:109–159, 1971.

    Google Scholar 

  2. Cheng, C. P., D. Parker, and C. A. Taylor. Wall shear stress quantification from magnetic resonance imaging data using lagrangian interpolation functions. In: Proceedings of the 2001 ASME Summer Bioengineering Meeting. Park City, UT, 2001, pp. 795–796.

  3. Cheng, C. P., D. Parker, and C. A. Taylor. Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with Cine PC–MRI. Ann. Biomed. Eng. (submitted).

  4. Cybulsky, M. I., and M. A. Gimbrone, Jr.. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791, 1991.

    Google Scholar 

  5. Fredrickson, J. O., P. Irarrazabal, and N. J. Pelc. Quantitative 3d time–resolved phase contrast MR imaging. SMR Workshop: Cardiovascular MRI: Present and Future, 1994, p. 25.

  6. Fredrickson, J. O., H. Wegmuller, R. J. Herfkens, and N. J. Pelc. Simultaneous temporal resolution of cardiac and respiratory motion in MR imaging. Radiology 195:169–175, 1995.

    Google Scholar 

  7. Friedman, M. H., G. M. Hutchins, and C. B. Bargeron. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis (Berlin) 39:425, 1981.

    Google Scholar 

  8. Glagov, S., D. A. Rowley, and R. Kohut. Atherosclerosis of human aorta and its coronary and renal arteries. Arch. Pathol. Lab. Med. 72:558, 1961.

    Google Scholar 

  9. He, X., and D. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Google Scholar 

  10. Ku, D., D. Giddens, C. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low oscillating shear stress. Atherosclerosis (Berlin) 5:293–302, 1985.

    Google Scholar 

  11. Moore, J., D. Ku, C. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: Implications for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114:391–397, 1992.

    Google Scholar 

  12. Moore, J., and D. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.

    Google Scholar 

  13. Moore, J., and D. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. J. Biomech. Eng. 116:107–111, 1994.

    Google Scholar 

  14. Moore, J., S. Maier, D. Ku, and P. Boesiger. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl. Physiol. 76:1520–1527, 1994.

    Google Scholar 

  15. Moore, Jr., J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis. Atherosclerosis (Berlin) 110:225–240, 1994.

    Google Scholar 

  16. Niezen, R. A., J. Doornbos, E. E. Van Der Wall, and A. De Roos. Measurement of aortic and pulmonary flow with MRI at rest and during physical exercise. J. Comput. Assist. Tomog. 22:194–201, 1998.

    Google Scholar 

  17. Nobutaka, I., S. Ramasamy, T. Fukai, R. Nerem, and D. G. Harrison. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ. Res. 79:32–37, 1996.

    Google Scholar 

  18. Oshinski, J. N., D. N. Ku, S. Mukundan, Jr., F. Loth, and R. I. Pettigrew. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. Magn. Reson. Imaging 5:640–647, 1995.

    Google Scholar 

  19. Oyre, S., E. M. Pedersen, S. Ringgaard, P. Boesiger, and W. P. Paaske. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur. J. Vasc. Endo. Surg. 13:263–271, 1997.

    Google Scholar 

  20. Pedersen, E. M., S. Hsing–Wen, A. C. Burlson, and A. P. Yoganathan. Two–dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. J. Biomech. 26:1237–1247, 1993.

    Google Scholar 

  21. Pedersen, E. M., S. Kozerke, S. Ringgaard, M. B. Scheidegger, and P. Boesiger. Quantitative abdominal aortic flow measurements at controlled levels of ergometer exercise. Magn. Reson. Imaging 17:489–494, 1999.

    Google Scholar 

  22. Pelc, L. R., N. J. Pelc, S. C. Rayhill, L. J. Castro, G. H. Glover, R. J. Herfkens, D. C. Miller, and R. B. Jeffrey. Arterial and venous blood flow: Noninvasive quantitation with MR imaging. Radiology 185:809–812, 1992.

    Google Scholar 

  23. Pelc, N. J., F. G. Sommer, K. C. Li, T. J. Brosnan, R. J. Herfkens, and D. R. Enzmann. Quantitative magnetic resonance flow imaging. Magn. Reson. Q. 10:125–147, 1994.

    Google Scholar 

  24. Pollack, M., and J. Wilmore. Exercise in Health and Disease: Evaluation and Prescription for Prevention and Rehabilitation, 2nd ed. Philadelphia: W. B. Saunders, 1990.

    Google Scholar 

  25. Roberts, J. C., C. Moses, and R. H. Wilkins. Autopsy studies in atherosclerosis: I. Distribution and severity of atherosclerosis in patients dying without any morphologic evidence of atherosclerotic catastrophe. Circulation 20:511–519, 1959.

    Google Scholar 

  26. Schalet, B., C. Taylor, E. Harris, R. Herfkens, and C. Zarins. Quantitative assessment of human aortic blood flow during exercise. Surg. Forum. XLVIII:359–362, 1997.

    Google Scholar 

  27. Sessa, W., K. Pritchard, N. Seydi, J. Wang, and T. Hintze. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ. Res. 74:349–353, 1994.

    Google Scholar 

  28. Sethian, J. A. Level Set Methods and Fast Marching Methods. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  29. Strong, J. P., G. T. Malcom, C. A. Mcmahan, R. E. Tracy, W. P. Newman Iii, E. E. Herderick, and J. F. Cornhill. Prevalence and extent of atherosclerosis in adolescents and young adults: Implication for prevention from pathobiological determinants of atherosclerosis in youth study. J. Am. Med. Assoc. 281:727–735, 1999.

    Google Scholar 

  30. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of three–dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis. Ann. Biomed. Eng. 26:975–987, 1998.

    Google Scholar 

  31. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.

    Google Scholar 

  32. Wang, J., S. M. Wolin, and H. T. Hintze. Chronic exercise enhances endothelium–mediated dilation of epicardial coronary artery in conscious dogs. Circ. Res. 73:929–1838, 1993.

    Google Scholar 

  33. Wang, K. C., R. W. Dutton, and C. A. Taylor. Geometric image segmentation and image–based model construction for computational hemodynamics. IEEE Eng. Med. Biol. Mag. 18:33–39, 1999.

    Google Scholar 

  34. Womersley, J. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. (London) 127:553–563, 1955.

    Google Scholar 

  35. Zarins, C. K., R. A. Bomberger, and S. Glagov. Local effects of stenoses: Increased flow velocity inhibits atherogenesis. Circulation 64:II–221–227, 1981.

    Google Scholar 

  36. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, C.A., Cheng, C.P., Espinosa, L.A. et al. In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise. Annals of Biomedical Engineering 30, 402–408 (2002). https://doi.org/10.1114/1.1476016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1476016

Navigation