Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 13, 2006

Blood transfusions in athletes. Old dogmas, new tricks

  • Giuseppe Lippi and Giuseppe Banfi

Abstract

Blood doping consists of any illicit means used to increase and optimize oxygen delivery to the muscles and includes blood transfusions, administration of erythropoiesis-stimulating substances, blood substitutes, natural or artificial altitude facilities, and innovative gene therapies. The use of blood transfusion, an extremely straightforward, practical and effective means of increasing an athlete's red blood-cell supply in advance of competition, became rather popular in the 1970s, but it has suddenly declined following the widespread use of recombinant human erythropoietin among elite endurance athletes. Most recently, following implementation of reliable tests to screen for erythropoiesis-stimulating substances, blood transfusions have made a strong resurgence, as attested by several positive doping tests. Doping by blood transfusion can be classified as homologous, where the blood is infused into someone other than the donor, and autologous, where the blood donor and transfusion recipient are the same. The former case produces more clinically relevant side effects, but is easily detectable using current antidoping protocols based on erythrocyte phenotyping by flow cytometry and, eventually, erythrocyte genotyping by DNA testing. Since the donor and recipient blood are identical in autologous blood doping, this is less risky, though much more challenging to detect. Indirect strategies, relying on significant deviations from individual hematological profiles following autologous blood donation and reinfusion, are currently being investigated. For the time being, the storage of athletes' blood samples to allow testing and sanctioning of guilty athletes once a definitive test has been introduced may represent a reliable deterrent policy.

Clin Chem Lab Med 2006;44:1395–402.


Corresponding author: Prof. Giuseppe Lippi, Sezione di Chimica e Microscopia Clinica, Dipartimento di Scienze Morfologico-Biomediche, Università degli Studi di Verona, Ospedale Policlinico G.B. Rossi, Piazzale Scuro, 10, 37134 Verona, Italy Fax: +39-045-8201889

References

1. Prendergast HM, Bannen T, Erickson TB, Honore KR. The toxic torch of the modern Olympic Games. Vet Hum Toxicol 2003; 45:97–102.Search in Google Scholar

2. Lippi G, Franchini M, Salvagno GL, Guidi GC. Biochemistry, physiology, and complications of blood doping: facts and speculation. Crit Rev Clin Lab Sci 2006; 43:349–91.10.1080/10408360600755313Search in Google Scholar PubMed

3. Williams MH, Wesseldine S, Somma T, Schuster R. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sports Exerc 1981; 13:169–75.10.1249/00005768-198103000-00004Search in Google Scholar

4. Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. J Am Med Assoc 1987; 257:2761–5.10.1001/jama.1987.03390200101022Search in Google Scholar

5. Robertson RJ, Gilcher R, Metz KF, Skrinar GS, Allison TG, Bahnson HT, et al. Effect of induced erythrocythemia on hypoxia tolerance during exercise. J Appl Physiol 1982; 53:490–5.10.1152/jappl.1982.53.2.490Search in Google Scholar PubMed

6. Buick FJ, Gledhill N, Froese AB, Spriet L, Meyers EC. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48:636–42.10.1152/jappl.1980.48.4.636Search in Google Scholar PubMed

7. Ekblom BT. Blood boosting and sport. Baillieres Best Pract Res Clin Endocrinol Metab 2000; 14:89–98.10.1053/beem.2000.0056Search in Google Scholar PubMed

8. Berglund B, Hemmingson P. Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Int J Sports Med 1987; 8:231–3.10.1055/s-2008-1025661Search in Google Scholar PubMed

9. Spriet LL, Gledhill N, Froese AB, Wilkes DL. Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J Appl Physiol 1986; 61:1942–8.10.1152/jappl.1986.61.5.1942Search in Google Scholar PubMed

10. Jones M, Tunstall Pedoe D. Blood doping: a literature review. Br J Sports Med 1989; 23:84–8.10.1136/bjsm.23.2.84Search in Google Scholar PubMed PubMed Central

11. Leigh-Smith S. Blood boosting. Br J Sports Med 2004; 38:99–101.10.1136/bjsm.2003.007195Search in Google Scholar PubMed PubMed Central

12. McCrory P. Pursuing the dream. Br J Sports Med 2004; 38:665.10.1136/bjsm.2004.015974Search in Google Scholar

13. Ekblom B, Goldbarg AN, Gullbring B. Response to exercise after blood loss and reinfusion. J Appl Physiol 1972; 33:175–80.10.1152/jappl.1972.33.2.175Search in Google Scholar

14. Klein HG. Blood transfusion and athletic games people play. N Engl J Med 1985; 312:854–6.10.1056/NEJM198503283121311Search in Google Scholar

15. Spivak JL. Erythropoietin use and abuse: when physiology and pharmacology collide. Adv Exp Med Biol 2001; 502:207–24.10.1007/978-1-4757-3401-0_14Search in Google Scholar

16. Stray-Gundersen J, Videman T, Penttila I, Lereim I. Abnormal hematologic profiles in elite cross-country skiers: blood doping or? Clin J Sport Med 2003; 13:132–7.10.1097/00042752-200305000-00002Search in Google Scholar

17. D'Onofrio G, Zini G. Addendum to strategies to deter blood doping in sports. Haematologica 2002; 87:ELT31.Search in Google Scholar

18. Abellan R, Remacha AF, Ventura R, Sardà MP, Segura J, Rodriguez FA. Hematologic response to four weeks of intermittent hypobaric hypoxia in highly trained athletes. Haematologica 2005; 90:126–7.Search in Google Scholar

19. Rice L, Alfrey CP. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 2005; 15:245–50.10.1159/000087234Search in Google Scholar

20. Berglund B, Girgegard G, Wide L, Philstedt P. Effects of blood transfusion on some haematological variables in endurance athletes, Med Sci Sports Exerc 1989; 21:637–42.10.1249/00005768-198912000-00002Search in Google Scholar

21. Union Cycliste International. Puerto operation: The UCI's standpoint. Available at http://www.uci.ch/. Accessed 2 August 2006.Search in Google Scholar

22. USA Today. Spanish scandal not limited to cycling. Available at http://www.usatoday.com. Accessed 2 August 2006.Search in Google Scholar

23. Haisma HJ, de Hon O. Gene doping. Int J Sports Med 2006; 27:257–66.10.1055/s-2006-923986Search in Google Scholar

24. Robinson N, Giraud S, Saudan C, Baume N, Avois L, Mangin P, et al. Erythropoietin and blood doping. Br J Sports Med 2006; 40(Suppl 1):30–4.10.1136/bjsm.2006.027532Search in Google Scholar

25. Parisotto R, Gore CJ, Emslie KR, Ashenden MJ, Brugnara C, Howe C, et al. A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica 2000; 85:564–72.Search in Google Scholar

26. Cartron JP. Defining the Rh blood group antigens. Biochemistry and molecular genetics. Blood Rev 1994; 8:199–212.10.1016/0268-960X(94)90108-2Search in Google Scholar

27. Nelson M, Ashenden M, Langshaw M, Popp H. Detection of homologous blood transfusion by flow cytometry: a deterrent against blood doping. Haematologica 2002; 87:881–2.Search in Google Scholar

28. Nelson M, Popp H, Sharpe K, Ashenden M. Proof of homologous blood transfusion through quantification of blood group antigens. Haematologica 2003; 88:1284–95.Search in Google Scholar

29. Wu YY, Csako G. Rapid and/or high-throughput genotyping for human red blood cell, platelet and leukocyte antigens, and forensic applications. Clin Chim Acta 2006; 363:165–76.10.1016/j.cccn.2005.07.010Search in Google Scholar

30. Drexler C, Glock B, Vadon M, Staudacher E, Dauber EM, Ulrich S, et al. Tetragametic chimerism detected in a healthy woman with mixed-field agglutination reactions in ABO blood grouping. Transfusion 2005; 45:698–703.10.1111/j.1537-2995.2005.04304.xSearch in Google Scholar

31. Avent ND, Reid ME. The Rh blood group system: a review. Blood 2000; 95:375–87.10.1182/blood.V95.2.375Search in Google Scholar

32. Flegel WA, Wagner FF, Müller TH, Gassner C. Rh phenotype prediction by DNA typing and its application to practice. Transfus Med 1998; 8:281–302.10.1046/j.1365-3148.1998.00173.xSearch in Google Scholar

33. Montpetit A, Phillips MS, Mongrain I, Lemieux R, St-Louis M. High-throughput molecular profiling of blood donors for minor red blood cell and platelet antigens. Transfusion 2006; 46:841–8.10.1111/j.1537-2995.2006.00805.xSearch in Google Scholar

34. Beiboer SH, Wieringa-Jelsma T, Maaskant-Van Wijk PA, van der Schoot CE, van Zwieten R, Roos D, et al. Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization. Transfusion 2005; 45:667–79.10.1111/j.1537-2995.2005.04319.xSearch in Google Scholar

35. Denomme GA, Van Oene M. High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion 2005; 45:660–6.10.1111/j.1537-2995.2005.04365.xSearch in Google Scholar

36. Hashmi G, Shariff T, Seul M, Vissavajjhala P, Hue-Roye K, Charles-Pierre D, et al. A flexible array format for large-scale, rapid blood group DNA typing. Transfusion 2005; 45:680–8.10.1111/j.1537-2995.2005.04362.xSearch in Google Scholar

37. Pellegrino J Jr, Castilho L, Rios M, De Souza CA. Blood group genotyping in a population of highly diverse ancestry. J Clin Lab Anal 2001; 15:8–13.10.1002/1098-2825(2001)15:1<8::AID-JCLA2>3.0.CO;2-8Search in Google Scholar

38. Smith KJ, James DS, Hunt WC, McDonough W, Quintana R. A randomized, double-blind comparison of donor tolerance of 400 mL, 200 mL, and sham red cell donation. Transfusion 1996; 36:674–80.10.1046/j.1537-2995.1996.36896374369.xSearch in Google Scholar

39. Starklint J, Norgaard Bech J, Aagaard O, Bjerregaard Pedersen E. Hypochromic reticulocytes, hypochromic erythrocytes and p-transferrin receptors in diagnosing iron-deficient erythropoiesis. Scand J Clin Lab Invest 2004; 64:691–702.10.1080/00365510410002940Search in Google Scholar PubMed

40. Damsgaard R, Munch T, Morkeberg J, Mortensen SP, Gonzalez-Alonso J. Effects of blood withdrawal and reinfusion on biomarkers of erythropoiesis in humans: implications for anti-doping strategies. Haematologica 2006; 91:1006–8.Search in Google Scholar

41. Berglund B, Hemmingsson P, Birgegard G. Detection of autologous blood transfusions in cross-country skiers. Int J Sports Med 1987; 8:66–70.10.1055/s-2008-1025643Search in Google Scholar PubMed

42. Guidi GC, Lippi G, Solero GP, Poli G, Plebani M. Managing transferability of laboratory data. Clin Chim Acta 2006. In press; doi:10.1016/j.cca.2006.06.009.10.1016/j.cca.2006.06.009Search in Google Scholar PubMed

43. Fraser CG, Wilkinson SP, Neville RG, Knox JD, King JF, Mac Walter RS. Biologic variation of common hematologic laboratory quantities in the elderly. Am J Clin Pathol 1989; 92:464–70.10.1093/ajcp/92.4.465Search in Google Scholar PubMed

44. Banfi G, Mauri C, Morelli B, Di Gaetano N, Malgeri U, Melegati G. Reticulocyte count, mean reticulocyte volume, immature reticulocyte fraction, and mean sphered cell volume in elite athletes: reference values and comparison with the general population. Clin Chem Lab Med 2006; 44:616–22.10.1515/CCLM.2006.094Search in Google Scholar PubMed

45. Malcovati L, Pascutto C, Cazzola M. Hematologic passport for athletes competing in endurance sports: a feasibility study. Haematologica 2003; 88:570–1.Search in Google Scholar

46. Ashenden MJ, Lacoste A, Orhant E, Audran M, Sharpe K. Longitudinal variation of hemoglobin and reticulocytes in elite rowers. Haematologica 2004; 89:1403–4.Search in Google Scholar

47. Sharpe K, Ashenden MJ, Schumacher YO. A third generation approach to detect erythropoietin abuse in athletes. Haematologica 2006; 91:356–63.Search in Google Scholar

48. Ashenden MJ, Sharpe K, Schoch C, Schumacher YO. Effect of pre-competition and altitude training on blood models used to detect erythropoietin abuse by athletes. Haematologica 2004; 89:1019–20.Search in Google Scholar

49. Ekblom B, Holmberg HC, Eriksson K. Doping in endurance sports. Survey of individual [Hb] levels can expose doping. Lakartidningen 2001; 98:5490–2.Search in Google Scholar

50. Banfi G, Dolci A, Zorzino L, Longhi E, Barberis M. Comparison of 3 automatic systems for reticulocytes counts during an ultraendurance mountain marathon. J Sports Med Phys Fitness 2003; 43:256–7.Search in Google Scholar

51. Ashenden MJ, Sharpe K, Damsgaard R, Jarvis L. Standardization of reticulocyte values in an antidoping context. Am J Clin Pathol 2004; 121:816–25.10.1309/1FAM1VT3N76GJGXVSearch in Google Scholar

52. Costongs GM, Janson PC, Bas BM, Hermans J, Brombacher PJ, Van Wersch JW. Short-term and long-term intraindividual variations and critical difference of haematological laboratory parameters. J Clin Chem Clin Biochem 1985; 23:69–76.Search in Google Scholar

53. Schumacher YO, Jankovits R, Bultermann D, Schmid A, Berg A. Hematological indices in elite cyclists. Scand J Med Sci Sports 2002; 12:301–8.10.1034/j.1600-0838.2002.10112.xSearch in Google Scholar PubMed

54. Schumacher YO, Grathwohl D, Barturen JM, Wollenweber M, Heinrich L, Schmid A, et al. Haemoglobin, haematocrit and red blood cell indices in elite cyclists. Are the control values for blood testing valid? Int J Sports Med 2000; 21:380–5.Search in Google Scholar

55. Lippi G, Franchini M, Guidi G. Haematocrit measurement and antidoping policies. Clin Lab Haematol 2002; 24:65–6.10.1046/j.1365-2257.2002.00425.xSearch in Google Scholar PubMed

56. Banfi G, Del Fabbro M, Mauri C, Corsi MM, Melegati G. Haematological parameters in elite rugby players during a competitive season. Clin Lab Haematol 2006; 28:183–8.10.1111/j.1365-2257.2006.00771.xSearch in Google Scholar PubMed

57. Lippi G, Guidi GC, Mattiuzzi C, Plebani M. Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med 2006; 44:358–65.10.1515/CCLM.2006.073Search in Google Scholar PubMed

58. Lippi G, Salvagno GL, Montagnana M, Franchini M, Guidi GC. Phlebotomy issues and quality improvement in results of laboratory testing. Clin Lab 2006; 52:217–30.Search in Google Scholar

59. Banfi G, Dolci A. Preanalytical phase of sport biochemistry and haematology. J Sports Med Phys Fitness 2003; 43:223–30.Search in Google Scholar

60. Lippi G, Franchini M, Guidi GC. Haematological testing and antidoping policies. Int J Sports Med 2005; 26:508–9.10.1055/s-2005-865834Search in Google Scholar

61. Lippi G, Salvagno GL, Solero GP, Franchini M, Guidi GC. Stability of blood cell counts, hematologic parameters and reticulocytes indexes on the Advia A120 hematologic analyzer. J Lab Clin Med 2005; 146:333–40.10.1016/j.lab.2005.08.004Search in Google Scholar

62. Lippi G, Salvagno GL, Solero GP, Guidi GC. The influence of the tourniquet time on hematological testing for antidoping purposes. Int J Sports Med 2006; 27:359–62.10.1055/s-2005-865749Search in Google Scholar

63. Sandler SG, Yu H, Rassai N. Risks of blood transfusion and their prevention. Clin Adv Hematol Oncol 2003; 1:307–13.Search in Google Scholar

64. Ghaphery NA. Performance-enhancing drugs. Orthop Clin North Am 1995; 26:433–42.10.1016/S0030-5898(20)32008-3Search in Google Scholar

65. Smith DA, Perry PJ. The efficacy of ergogenic agents in athletic competition. Part II. Other performance-enhancing agents. Ann Pharmacother 1992; 26:653–9.10.1177/106002809202600510Search in Google Scholar PubMed

66. Gauthier J. Blood doping and cardiovascular consequences. Presse Med 2002; 31:1904–8.Search in Google Scholar

67. Lippi G, Franchini M, Guidi G. Second generation blood tests to detect erythropoietin abuse by athletes: effective but not preventive? Haematologica 2004; 89:ELT05.Search in Google Scholar

Received: 2006-8-3
Accepted: 2006-8-28
Published Online: 2006-12-13
Published in Print: 2006-12-1

©2006 by Walter de Gruyter Berlin New York

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/CCLM.2006.262/html
Scroll to top button