Skip to main content
Log in

Isokinetic Dynamometry

Applications and Limitations

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Isokinetic contraction is the muscular contraction that accompanies constant velocity limb movements around a joint. The velocity of movement is maintained constant by a special dynamometer. The resistance of the dynamometer is equal to the muscular forces applied throughout the range of movement. This method allows the measurement of the muscular forces in dynamic conditions and provides optimal loading of the muscles.

However, during movements in the vertical plane, the torque registered by the dynamometer is the resultant torque produced by the muscular and gravitational forces. The error depends on the angular position and the torque potential of the tested muscle group. Several methods have been developed for the correction of gravitational errors in isokinetic data.

The torque output also contains artefacts that are associated with the inertial forces during acceleration and deceleration periods before the development of the constant preset angular velocity. For an accurate assessment of muscle function, only constant velocity data should be analysed.

The most frequently used isokinetic parameters are the maximum torque and the angular position where it was recorded, the torque output at different angular velocities of movement, the torque ratio of reciprocal muscle groups and the torque output during repeated contractions.

The unique features of isokinetic dynamometry are optimal loading of the muscles in dynamic conditions and constant preselected velocity of movement. These features provide safety in the rehabilitation of patients with muscular and ligamentous injuries. Isokinetic dynamometry has also been used for the training of various muscle groups in order to improve the muscular performance in dynamic conditions. The movement velocity of different activities can be simulated during training in order to improve the training effect.

Data acquisition and analysis have been improved by using computer systems interfaced to isokinetic dynamometers. Recently developed computer systems provide correction for gravitational and inertial errors, accurate computation of isokinetic parameters and real-time display of the torque output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Appen L, Duncan WP. Strength relationship of the knee musculature: effect of gravity and sport. Journal of Orthopaedic and Sports Physical Therapy 7: 232–235, 1986

    Google Scholar 

  • Armstrong EL, Winant MD, Swasey RP, Seidle EM, Carter LA, et al. Using isokinetic dynamometry to test ambulatory patients with multiple sclerosis. Physical Therapy 3: 1274–1279, 1983

    Google Scholar 

  • Baltzopoulos V. The development of a computer system for realtime display and analysis of isokinetic data. Unpublished M.Phil dissertation, University of Liverpool, 1988

  • Baltzopoulos V, Brodie DA. The effect of isokinetic training on the maximum torque output of swimmers using the Akron dynamometer. 5th International Symposium of Biomechanics in Sports, Athens, July 13–18, 1987

  • Baltzopoulos V, Eston RG, McLaren D. A comparison of power outputs on the Wingate test and on a test using an isokinetic device. Ergonomics 31: 1693–1699, 1988

    Article  PubMed  CAS  Google Scholar 

  • Barnes W. The relationship of motor unit activation to isokinetic muscular contraction at different contractile velocities. Physical Therapy 60: 1152–1158, 1980

    PubMed  CAS  Google Scholar 

  • Barnes W. Isokinetic fatigue curves at different contractile velocities. Archives of Physical Medicine and Rehabilitation 62: 66–69, 1981

    PubMed  CAS  Google Scholar 

  • Bemben M, Grump K, Massey B. Assessment of technical accuracy of the Cybex II isokinetic dynamometer and analog recording system. Journal of Orthopaedic and Sports Physical Therapy 10: 12–17, 1988

    Google Scholar 

  • Beskin J, Sanders R, Hunter S, Hughston J. Surgical repair of achilles tendon ruptures. American Journal of Sports Medicine 15: 1–8, 1987

    Article  PubMed  CAS  Google Scholar 

  • Burdett R, Swearingen J. Reliability of isokinetic muscle endurance tests. Journal of Orthopaedic and Sports Physical Therapy 8: 484–488, 1987

    PubMed  CAS  Google Scholar 

  • Burnie J, Brodie DA. Isokinetics in the assessment of rehabilitation. Clinical Biomechanics 1: 140–146, 1986

    Article  Google Scholar 

  • Caiozzo VJ, Perrine JJ, Edgerton VR. Training induced alterations on the in vivo force-velocity relationship in human muscle. Journal of Applied Physiology 51: 750–754, 1981

    PubMed  CAS  Google Scholar 

  • Campbell DE. Generation of horsepower at low and high velocity by sprinters and distance runners. Research Quarterly 50: 1–8, 1979

    PubMed  CAS  Google Scholar 

  • Campbell DE, Glenn W. Rehabilitation of knee extensor and flexor muscle strength in patients with meniscectomies, ligamentous repairs and chondromalacia. Physical Therapy 62: 10–15, 1982

    PubMed  CAS  Google Scholar 

  • Coyle E, Costill D, Lesmes G. Leg extension power and muscle fiber composition. Medicine and Science in Sports 11: 12–15, 1979

    PubMed  CAS  Google Scholar 

  • Coyle, E, Feiring D, Rotkins T, Cote W, Roby F, et al. Specificity of power improvements through slow and fast isokinetic training. Journal of Applied Physiology 51: 1437–1442, 1981

    PubMed  CAS  Google Scholar 

  • Davies JG, Kirkendall TD, Leigh HD, Lai LH, Reinhold RT, et al. Isokinetic characteristics of professional football players: normative data between quadriceps and hamstrings muscle groups and relative to body weight. Medicine and Science in Sports and Exercise 13: 76–77, 1981

    Article  Google Scholar 

  • Dibrezzo R, Gensch BE, Hinson MM, King J. Peak torque values of the knee extensor and flexor muscles of females. Journal of Orthopaedic and Sports Physical Therapy 7: 65–68, 1985

    PubMed  CAS  Google Scholar 

  • Fenn WO, Marsh BS. Muscular force at different speeds of shortening. Journal of Physiology 85: 277–297, 1935

    PubMed  CAS  Google Scholar 

  • Fillyaw M, Bevins T, Fernandez L. Importance of correcting isokinetic peak torque for the effect of gravity when calculating knee flexor to extensor muscle ratios. Physical Therapy 66: 23–31, 1986

    PubMed  CAS  Google Scholar 

  • Fleming RT, Blatz D, McCarroll J. Lateral reconstruction for anterolateral rotary instability of the knee. American Journal of Sports Medicine 11: 303–307, 1983

    Article  PubMed  Google Scholar 

  • Garnica RA. Muscular power in young women after fast and slow isokinetic training. Journal of Orthopaedic and Sports Physical Therapy 8: 1–9, 1986

    PubMed  CAS  Google Scholar 

  • Gilliam T, Sady S, Freedson P, Villanaci J. Isokinetic torque levels for high school football players. Archives of Physical Medicine and Rehabilitation 60: 110–114, 1979

    PubMed  CAS  Google Scholar 

  • Goslin B, Charteris J. Isokinetic dynamometry: normative data for clinical use in lower extremity (knee cases). Scandinavian Journal of Rehabilitative Medicine 11: 105–109, 1979

    CAS  Google Scholar 

  • Grace T. Muscle imbalance and extremity injury: a perplexing relationship. Sports Medicine 2: 77–82, 1985

    Article  PubMed  CAS  Google Scholar 

  • Grace T, Sweetser E, Nelson M, Ydens L, Skipper B. Isokinetic muscle imbalance and knee joint injuries. Journal of Bone and Joint Surgery 66-A: 734–740, 1984

    Google Scholar 

  • Gransberg L, Knutsson E. Determination of dynamic muscle strength in man with acceleration controlled isokinetic movements. Acta Physiologica Scandinavica 119: 317–320, 1983

    Article  PubMed  CAS  Google Scholar 

  • Gregor R, Edgerton R, Perrine J, Campion D, Debus C. Torque-velocity relationship and muscle fiber composition in elite female athletes. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 47: 388–392, 1979

    CAS  Google Scholar 

  • Grimby G. Progressive resistance exercise for injury rehabilitation: special emphasis on isokinetic training. Sports Medicine 2: 309–315, 1985

    Article  PubMed  CAS  Google Scholar 

  • Grimby G, Gustafsson E, Peterson K, Renstrom P. Quadriceps function and training after knee ligament surgery. Medicine and Science in Sports and Exercise 12: 70–75, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hamberg P, Gillquist J, Lysholm J, Oberg B. The effect of diagnostic and operative arthroscopy and open meniscectomy on muscle strength in the thigh. American Journal of Sports Medicine 11: 289–292, 1983

    Article  PubMed  CAS  Google Scholar 

  • Heiser TM, Weber J, Sullivan G, Clare P, Jacobs RR. Prophylaxis and management of hamstring muscle injuries in intercollegiate football players. American Journal of Sports Medicine 12: 368–370, 1984

    Article  PubMed  CAS  Google Scholar 

  • Herzog W. The relation between the resultant moments at a joint and the moments measured by an isokinetic dynamometer. Journal of Biomechanics 21: 5–12, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hill VA. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London B126: 136–195, 1938

    Article  Google Scholar 

  • Hinson M, Smith W, Funk S. Isokinetics: a clarification. Research Quarterly 50: 30–35, 1979

    PubMed  CAS  Google Scholar 

  • Hislop HJ, Penine JJ. Isokinetic concept of exercise. Physical Therapy 47: 114–117 1967

    PubMed  CAS  Google Scholar 

  • Housh TJ, Thorland WG, Tharp GD, Johnson GO, Cisar CJ. Isokinetic leg flexion and extension strength of elite adolescent female track and field athletes. Research Quarterly for Exercise and Sport 55: 347–350, 1984

    Google Scholar 

  • Inglis A, Scott N, Sculco T, Patterson A. Ruptures of the tendo achilles: an objective assessment of surgical and non-surgical treatment. Journal of Bone and Joint Surgery 58-A: 990–993, 1976

    Google Scholar 

  • Jenkins W, Thackaberry M, Killiam C. Speed-specific isokinetic training. Journal of Orthopaedic and Sports Physical Therapy 6: 181–183, 1984

    PubMed  CAS  Google Scholar 

  • Jensen J, Conn R, Hazelrigg G, Hewett J. The use of transcutaneous neural stimulation and isokinetic testing in arthroscopic knee surgery. American Journal of Sports Medicine 13: 27–33, 1985

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Siegel D. Reliability of an isokinetic movement of the knee extensors. Research Quarterly 49: 88–90, 1978

    PubMed  CAS  Google Scholar 

  • Kishino N, Mayer T, Gatchel R, McCrate Parrish M, Anderson C, et al. Isometric and isokinetic lifting simulation in normal subjects and low back dysfunction patients. Spine 10: 921–927, 1985

    Article  PubMed  CAS  Google Scholar 

  • Knutsson E, Martensson A. Isokinetic measurements of muscle strength in hysterical paresis. Electroencephalography and Clinical Neurophysiology 61: 370–374, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lesmes GR, Costill DL, Coyle FE, Fink WJ. Muscle strength and power changes during maximal isokinetic training. Medicine and Science in Sports and Exercise 10: 262–269, 1978

    Google Scholar 

  • LoPresti C, Kirkendall D, Street G, Dudley D. Quadriceps insufficiency following repair of the anterior cruciate ligament. Journal of Orthopaedic and Sports Physical Therapy 9: 245–249, 1988

    PubMed  CAS  Google Scholar 

  • Lysholm J, Nordin M, Ekstrand J, Gillquist J. The effect of a patella brace on performance in a knee extension strength test in patients with patella pain. American Journal of Sports Medicine 12: 110–112, 1984

    Article  PubMed  CAS  Google Scholar 

  • Mayer T, Smith S, Kondraske G, Gatchel R, Carmichael T, et al. Preliminary data on isokinetic torso rotation testing with myoelectric spectral analysis in normal and low-back pain subjects. Spine 10: 912–920, 1985

    Article  PubMed  CAS  Google Scholar 

  • Miller L, Donahue J, Good R, Staerk A. The Magnuson-Stack procedure for treatment of recurrent glenohumeral dislocations. American Journal of Sports Medicine 12: 133–137, 1984

    Article  PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB, Lee RG. Synchronization of human motor units: possible role of exercise and supraspinal reflexes. Electroencephalography and Clinical Neurophysiology 38: 245–254, 1975

    Article  PubMed  CAS  Google Scholar 

  • Mira A, Kitty Markley C, Greer R. A critical analysis of quadriceps function after femoral shaft fracture in adults. Journal of Bone and Joint Surgery 62-A: 61–67, 1980

    Google Scholar 

  • Moffroid M, Whipple R, Hofkosh J, Lowman E, Thistle H. A study of isokinetic exercise. Physical Therapy 49: 735–742, 1969

    PubMed  CAS  Google Scholar 

  • Morris A, Lussier K, Bell G, Dooley J. Hamstrings/quadriceps strength ratios in collegiate middle-distance and distance runners. Physician and Sportsmedicine 11: 71–77, 1983

    Google Scholar 

  • Mulder H. Ice hockey injuries. Journal of Sports Medicine 1: 41–42, 1973

    Article  Google Scholar 

  • Murray D. Optimal filtering of constant velocity torque data. Medicine and Science in Sports and Exercise 18: 603–611, 1986

    PubMed  CAS  Google Scholar 

  • Murray MS, Warren FR, Otis CJ, Kroll M, Wickiewicz LT. Torque-velocity relationship of the knee extensors and flexors muscles in individuals sustaining injuries of the anterior cruciate ligament. American Journal of Sports Medicine 12: 436–440, 1984

    Article  PubMed  CAS  Google Scholar 

  • Nelson S, Duncan P. Correction of isokinetic torque recordings for the effect of gravity. Physical Therapy 63: 674–676, 1983

    PubMed  CAS  Google Scholar 

  • Nistor L. Surgical and non-surgical treatment of achilles tendon rupture. Journal of Bone and Joint Surgery 63-A: 394–399, 1981

    Google Scholar 

  • Noyes F, Mangine R, Barber S. Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. American Journal of Sports Medicine 15: 149–160, 1987

    Article  PubMed  CAS  Google Scholar 

  • Olerud S, Wallenstein R, Olsson E. Muscle strength after bilateral femoral osteotomy. Journal of Bone and Joint Surgery 66–6: 792–793, 1984

    Google Scholar 

  • Osternig L. Optimal isokinetic loading and velocities producing muscular power in human subjects. Archives of Physical Medicine and Rehabilitation 50: 152–155, 1975

    Google Scholar 

  • Osternig L, Sawhill J, Bates B, Hamill J. A method for rapid collection and processing of isokinetic data. Research Quarterly 53: 252–256, 1982

    Google Scholar 

  • Osternig K, Sawhill J, Bates B, Hamill J. Function of limb speed on torque patterns of antagonist muscles. In Matsui & Kobayashi (Eds) Biomechanics VIII-A, pp. 251–257, Human Kinetic Publishers, Champaign, 1983

    Google Scholar 

  • Parker M. Calculation of isokinetic rehabilitation velocities for the knee extensors. Journal of Orthopaedic and Sports Physical Therapy 4: 32–35, 1982

    PubMed  CAS  Google Scholar 

  • Parker M, Ruhling R, Bolen T, Edge R, Edwards S. Aerobic training and the force-velocity relationship of the human quadriceps femoris muscle. Journal of Sports Medicine 23: 136–147, 1983

    CAS  Google Scholar 

  • Patton J, Duggan A. An evaluation of tests of anaerobic power. Aviation, Space and Environmental Medicine 3: 237–242, 1987

    Google Scholar 

  • Patton WR, Hinson M, Arnold BR, Lessard MA. Fatigue curves of isokinetic contractions. Archives of Physical Medicine and Rehabilitation 59: 507–509, 1978

    PubMed  CAS  Google Scholar 

  • Penine J, Edgerton VR. Muscle force-velocity and power-velocity relationships under isokinetic loading. Medicine and Science in Sports 10: 159–166, 1978

    Google Scholar 

  • Pierre R, Andrews L, Allman F, Reming L. The Cybex II evaluation of lateral ankle ligamentous reconstructions. American Journal of Sports Medicine 12: 52–56, 1984

    Article  Google Scholar 

  • Potash R, Burn S, Grace P, Harris B, Zaris B, et al. Design of a computer based system for isokinetic testing and analysis. Athletic Training 18: 176–178, 1983

    Google Scholar 

  • Richards J, Cooper J. Implementation of an on-line isokinetic analysis system. Journal of Orthopaedic and Sports Physical Therapy 4: 36–38, 1982

    PubMed  CAS  Google Scholar 

  • Sale D, McComes J, McDougall D, Upton A. Neuromuscular adaptation in human muscles following strength training and immobilization. Journal of Applied Physiology 53: 419–424, 1982

    PubMed  CAS  Google Scholar 

  • Sale D, McDougall D, Upton A, McComes J. Effect of strength training upon motoneuron excitability in man. Medicine and Science in Sports and Exercise 15: 57–62, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sapega A, Nicholas J, Sokolow D, Sarantini A. The nature of torque “overshoot” in Cybex isokinetic dynamometry. Medicine and Science in Sports and Exercise 14: 368–375, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sawhill J, Bates B, Osternig L, Hamill J. Variability of isokinetic measures. Medicine and Science in Sports and Exercise 14: 177, 1982

    Article  Google Scholar 

  • Schlinkman B. Norms for high school football players derived from the Cybex data reduction computer. Journal of Orthopaedic and Sports Physical Therapy 5: 243–254, 1984

    PubMed  CAS  Google Scholar 

  • Scudder NG. Torque curves produced of the knee during isometric and isokinetic exercise. Archives of Physical Medicine and Rehabilitation 61: 68–72, 1980

    PubMed  CAS  Google Scholar 

  • Sherman W, Pearson D, Plyley M, Costill A, Habansky A, et al. Isokinetic rehabilitation after surgery: a review of factors which are important for developing physiotherapeutic techniques after knee surgery. American Journal of Sports Medicine 10: 155–161, 1982

    Article  PubMed  CAS  Google Scholar 

  • Shields C, Silva I, Yee L, Brewster C. Evaluation of residual instability after arthroscopic meniscectomy in anterior cruciate deficient knees. American Journal of Sports Medicine 15: 129–131, 1987

    Article  PubMed  Google Scholar 

  • Sinacore D, Rothstein J, Delitto A, Rose S. Effect of damp on isokinetic measurements. Physical Therapy 63: 1248–1250, 1983

    PubMed  CAS  Google Scholar 

  • Slagle GW. The importance of pre-testing the knee joint. Athletic Training 14: 225–226, 1979

    Google Scholar 

  • Smidt G, Herring T, Amundsen K, Rogers M, Russel A, et al. Assessment of abdominal and back extensor function: a quantitative approach and results for chronic low-back patients. Spine 8: 211–219, 1983

    Article  PubMed  CAS  Google Scholar 

  • Solomonow M, Baratta R, Zhou B, Shoji H, Bose W, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. American Journal of Sports Medicine 15: 207–213, 1987

    Article  PubMed  CAS  Google Scholar 

  • Thistle H, Hislop H, Moffroid M, Hofkosh J, Lowman E. Isokinetic contraction: a new concept of exercise. Archives of Physical Medicine and Rehabilitation 48: 279–282, 1967

    PubMed  CAS  Google Scholar 

  • Thomee R, Renstrom P, Grimby G, Peterson L. Slow and fast isokinetic training after knee ligament surgery. Journal of Orthopaedic and Sports Physical Therapy 8: 475–479, 1987

    PubMed  CAS  Google Scholar 

  • Thorbland J, Ekstrand J, Hamberg P, Gillquist J. Muscle rehabilitation after arthroscopic meniscectomy with or without tourniquet control: a preliminary randomized study. American Journal of Sports Medicine 13: 133–135, 1985

    Article  Google Scholar 

  • Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fibre composition in human knee extensor muscles. Journal of Applied Physiology 40: 12–16, 1976

    PubMed  CAS  Google Scholar 

  • Thorstensson A, Karlsson J. Fatigueability and muscle fibre composition in human skeletal muscle. Acta Physiologica Scandinavica 198: 318–322, 1976

    Article  Google Scholar 

  • Watkins PM, Harris AB, Kozlowski BA. Isokinetic training in patients with hemiparesis. Physical Therapy 64: 184–189, 1984

    PubMed  CAS  Google Scholar 

  • Winter DA, Wells RP, Orr GW. Errors in the use of isokinetic dynamometers. European Journal of Applied Physiology 46: 397–408, 1981

    Article  CAS  Google Scholar 

  • Wyatt MP, Edwards AM. Comparisons of quadriceps and hamstrings torque values during isokinetic exercise. Journal of Orthopaedic and Sports Physical Therapy 3: 48–56, 1981

    PubMed  CAS  Google Scholar 

  • Yates J, Kamon E. A comparison of peak and constant angle torque-velocity curves in fast and slow-twich populations. European Journal of Applied Physiology, 51: 67–74, 1983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltzopoulos, V., Brodie, D.A. Isokinetic Dynamometry. Sports Med 8, 101–116 (1989). https://doi.org/10.2165/00007256-198908020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198908020-00003

Keywords

Navigation