Skip to main content
Log in

Effectiveness of Training Programmes for Prepubescent Children

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Early investigators suggested that endurance training had little influence upon the aerobic function of the prepubescent child. It is shown that the twin explanations of this supposed phenomenon (a high intrinsic level of physical activity and an immaturity of biochemical systems) have little foundation. Moreover, critical examination of the original experiments shows a number of problems of experimental design, often including an inadequate sample size, a lack of control group, an inappropriate pattern of training relative to the initial fitness of the child, and too short a period of observation. Recent, well-designed studies all show a response in prepubescent children. Comparison with adults is hampered by difficulties in matching training intensity, but there is no immediate evidence that the training response of the prepubescent child is less than in an older person. The main basis for the increase of oxygen transport seems an increase of cardiac stroke volume. Plainly, the development of athletic performance and the attack upon cardiac risk factors can be begun before puberty, although in the average prepubescent it may be more important for the school programmes to develop positive, lifelong attitudes, than to maximise aerobic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams FH, Bengtsson E, Berven H, Wegelius C. The physical working capacity of normal schoolchildren. II. Swedish city and country. Pediatrics 28: 243–257, 1961

    PubMed  CAS  Google Scholar 

  • Alderson J, Crutchley D. Physical education and the national curriculum. In Armstrong N (Ed.) New directions in physical education, Vol. 1, pp.37–62, Human Kinetics, Leeds, 1990

    Google Scholar 

  • American Academy of Pediatrics. Fitness in the pre-school child. Pediatrics 58: 88–89, 1976

    Google Scholar 

  • American Academy of Pediatrics. Sports Medicine: health care for young athletes, American Academy of Pediatrics, Chicago, 1983

    Google Scholar 

  • American College of Sports Medicine. Position statement on the recommended quantity and quality of exercise for developing and maintaining fitness in healthy adults. Medicine and Science in Sports and Exercise 10(3): 7–10 1978

    Google Scholar 

  • American College of Sports Medicine. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Medicine and Science in Sports and Exercise 22: 265–274, 1990

    Google Scholar 

  • Andersen P, Saltin, B. Maximal perfusion of skeletal muscle in man. Journal of Physiology 366: 233–249, 1985

    PubMed  CAS  Google Scholar 

  • Anderson P, Fröberg K. Maximal oxygen uptake and lactate concentration in highly trained and normal boys during puberty. Acta Physiologica Scandinavica 108: 37A, 1980

    Google Scholar 

  • Armstrong N, Balding J, Gentle P, Kirby B. Estimation of coronary risk factors in British schoolchildren: a preliminary report. British Journal of Sports Medicine 24: 61–66, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ashton NG. Relationship of chronic physical activity levels to physiologic and anthropometric variables in 9–10-year old girls. Medicine and Science in Sports and Exercise 15: 143, 1983

    Article  Google Scholar 

  • Åstrand PO. Experimental studies of physical working capacity in relation to age and sex, Munksgard, Copenhagen 1952

    Google Scholar 

  • Åstrand PO. Fysiologiska synpunkter pa skolungsdomens fysika fostran: Preliminär rapport till folksam, Central Gymnastic Institute, Stockholm, 1961

    Google Scholar 

  • Atomi Y, Ohnishi H, Watanabe C, Ishayama M, Kuroda A, et al. Daily physical activity levels in preadolescent boys related to V̇O2max and lactate threshold. European Journal of Applied Physiology 55: 156–161, 1986

    Article  CAS  Google Scholar 

  • Bailey DA. Exercise, fitness and physical education for the growing child. In Orban WAR, (Ed.). Proceedings of National Conference on Fitness and Health, pp. 13–22, Fitness and Amateur Sport, Ottawa, 1974

    Google Scholar 

  • Bar-Or O. Pediatric sports medicine for the practitioner, Springer Verlag, Berlin 1983

    Book  Google Scholar 

  • Bar-Or O. Trainability of the pre-pubescent child. Physician and Sportsmedicine 17: 64–82, 1989

    Google Scholar 

  • Bar-Or O. Disease-specific benefits of training in the child with a chronic disease: What is the evidence? Pediatric Exercise Science 2: 299–312, 1990

    Google Scholar 

  • Bar-Or O, Shephard RJ, Allen C. Cardiac output of 10–13 year old boys and girls during submaximal exercise. Journal of Applied Physiology 30: 219–223, 1971

    PubMed  CAS  Google Scholar 

  • Bar-Or O, Zwiren L. Physiological effects of frequency and content of physical education classes and of endurance conditioning on 9- to 10-year old girls and boys. In Bar-Or O (Ed.) Pediatric work physiology IV, pp. 190–208, Wingate Institute, Natanya, Israel, 1973

    Google Scholar 

  • Benedict G, Vaccaro P, Hatfield BD. Physiological effects of an eight week precision jump program in children. American Corrective Therapy Journal 5: 108–111, 1985

    Google Scholar 

  • Berenson GS. Cardiovascular risk factors in children: The early natural history of atherosclerosis and essential hypertension, Oxford University Press, New York, 1980

    Google Scholar 

  • Berg K, Sady SP, Beal D, Savage M, Smith J. Developing an elementary school CHD prevention program. Physician and Sportsmedicine 10: 99–105, 1983

    Google Scholar 

  • Brown CH, Harrower JR, Deeter MF. The effects of cross-country running on preadolescent girls. Medicine and Science in Sports 4: 1–5, 1972

    PubMed  CAS  Google Scholar 

  • Bullen BA, Reed RB, Mayer J. Physical activity of obese and non-obese adolescent girls: appraised by motion picture samples. American Journal of Clinical Nutrition 14: 211–223, 1964

    PubMed  CAS  Google Scholar 

  • Canny GJ, Grisdale RK, Marcotte JE, Levison H. Exercise in cystic fibrosis. In Welsh P & Shephard RJ, (Eds) Current therapy in sports medicine, BC Decker, Burlington, Ont. 1985

    Google Scholar 

  • Chausow SA, Riner WF, Boileau RA. Metabolic and cardiovascular responses of children during prolonged physical activity. Research Quarterly 55: 1–7, 1984

    Google Scholar 

  • Cumming GR, Friesen W. Bicycle ergometer measurements of maximal oxygen uptake in children. Canadian Journal of Physiology and Pharmacology 45: 937–946, 1967

    Article  PubMed  CAS  Google Scholar 

  • Cumming GR, Goodwin A, Baggley G, Antel J. Repeated measurements of aerobic capacity during a week of intensive training at a youth’s track camp. Canadian Journal of Physiology and Pharmacology 45: 805–811, 1967

    Article  PubMed  CAS  Google Scholar 

  • Cumming GR, Goulding D, Baggley G. Failure of school physical education to improve cardiorespiratory fitness. Canadian Medical Association Journal 101: 69–73, 1969

    PubMed  CAS  Google Scholar 

  • Cunningham DA, van Waterschoot BM, Paterson DH, Lefcoe N, Sangal SP. Reliability and reproducibility of maximal oxygen uptake in children. Medicine and Science in Sports and Exercise 9: 104–108, 1977

    Article  CAS  Google Scholar 

  • Cunningham DA, Paterson DH, Blimkie CJR, Donner AP. Development of cardiorespiratory function in circumpubertal boys; a longitudinal study. Journal of Applied Physiology 56: 301–307, 1984

    Article  Google Scholar 

  • Daniels J, Oldridge N. Changes on oxygen consumption of young boys during growth and running training. Medicine and Science in Sports 3: 161–165, 1971

    PubMed  CAS  Google Scholar 

  • Daniels J, Oldridge N, Nagle F, White B. Differences and changes in Vo2 among young runners 10 to 18 years of age. Medicine and Science in Sports 10: 200–203, 1978

    PubMed  CAS  Google Scholar 

  • Dennison BA, Strauss JH, Mellits ED, Charney E. Childhood physical activity tests: Predictor of adult physical activity levels? Pediatrics 82: 324–330, 1988

    PubMed  CAS  Google Scholar 

  • Durnin JVGA. Activity patterns in the community. Canadian Medical Association Journal 96: 882–886, 1967

    PubMed  CAS  Google Scholar 

  • Ekblöm B. Effect of physical training in adolescent boys. Journal of Applied Physiology 27: 350–355, 1969

    PubMed  Google Scholar 

  • Eriksson B, Koch B. Cardiac output and intraarterial blood pressure at rest and during submaximal and maximal exercise in 11 to 13 year old boys before and after physical training. In Bar-Or O (Ed.) Pediatric work physiology, pp. 139–150, Wingate Institute, Natanya, Israel, 1973

    Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiologica Scandinavica 87: 485–497, 1973

    Article  PubMed  CAS  Google Scholar 

  • Fitness Canada, Canadian youth and physical activity, Fitness and Amateur Sport, Ottawa, 1983

  • Freedson PS. Field monitoring of physical activity in children. Pediatric Exercise Science 1: 8–18, 1989

    Google Scholar 

  • Gatch W, Byrd R. Endurance training and cardiovascular function in 9 and 10 year old boys. Archives of Physical Medicine and Rehabilitation 60: 574–577, 1979

    PubMed  CAS  Google Scholar 

  • Goode RC, Virgin A, Romet T, Duffin J, Crawford P, et al. Effects of a short period of physical activity in adolescent boys and girls. Canadian Journal of Applied Sport Sciences 1: 241–250, 1976

    Google Scholar 

  • Gilliam TB, Freedson PS. Effects of a 12 week school fitness program on peak V̇O2, body composition and blood lipids in 7-to 9-year-old children. International Journal of Sports Medicine 1: 73–78, 1980

    Article  Google Scholar 

  • Gilliam T, Freedson P, Geenen D, Shahaaray B. Physical activity patterns determined by heart rate monitoring in 6 to 7 year old children. Medicine and Science in Sports and Exercise 13: 65–67, 1981

    PubMed  CAS  Google Scholar 

  • Gilliam TB, MacConnie SE. Coronary heart disease risk in children and their physical activity patterns. In Boileau RA (Ed.) Advances in pediatric sport sciences, Vol. I, Biological issues, pp. 171–188. Human Kinetics, Champaign, Ill., 1984

    Google Scholar 

  • Godin G, Valois P, Shephard RJ, Desharnais R. Prediction of leisure time exercise behaviour a path analysis (Lisrel V) model. Journal of Behavioural Medicine 10: 145–158, 1987

    Article  CAS  Google Scholar 

  • Goode RC, Virgin A, Romet T, Duffin J, Crawford P, et al. Effects of a short period of physical activity in adolescent boys and girls. Canadian Journal of Applied Sport Sciences 1: 241–250, 1976

    Google Scholar 

  • Grodjinovsky A, Inbar O, Dotan R, Bar-Or O. Training effect on the anaerobic performance of children as measured by the Wingate anaerobic test. In Berg K & Eriksson BO (Eds) Children and exercise IX, pp. 139–145, University Park Press, Baltimore, 1980

    Google Scholar 

  • Grodjinovsky A, Bar-Or O. Influence of added physical education hours upon anaerobic capacity, adiposity and grip strength in 12–13 year-old children enrolled in a sports class. In Ilmarinen J & Valimaki I (Eds) Children and sport, pp. 162–169, Springer Verlag, Berlin, 1984

    Chapter  Google Scholar 

  • Hamilton P, Andrew GM. Influence of growth and athletic training on heart and lung functions. European Journal of Applied Physiology 36: 27–28, 1976

    Article  CAS  Google Scholar 

  • Ilmarinen J, Rutenfranz J. Longitudinal studies of the changes in habitual physical activity of schoolchildren and working adolescents. In Berg K & Erikson BO (Eds) Children and exercise, pp. 149–159, University Park Press, Baltimore, 1980

    Google Scholar 

  • Jéquier J-C, LaBarre R, Shephard RJ, Lavallée H, Rajic M, et al. Externe und interne Fehlerquellen einer Längsschnitt-Untersuchungen. In Bauss R & Roth K (Eds) Motorische Entwicklung, Probleme und Ergebnisse von Längschnittuntersuchungen, pp. 383–393, Institüt für Sportwissenschaft, Darmstadt, 1977

    Google Scholar 

  • Jokl E, McLellan JT. Exercise and cardiac death, University Park Press, Baltimore 1971

    Google Scholar 

  • Johnson EL. Effects of a 5-day a week versus 2- and 3-day a week physical education class on fitness skill, adipose tissue and growth. Research Quarterly 40: 93–98, 1969

    PubMed  CAS  Google Scholar 

  • Kanaley JA, Boileau RA. The onset of the anaerobic threshold at three stages of physical maturity. Journal of Sports Medicine 28: 367–374, 1988

    CAS  Google Scholar 

  • Kellet DW, Willan PLT, Bagnall KJ. A study of potential Olympic swimmers: part 2. Changes due to three months of intensive training. British Journal of Sports Medicine 12: 87–92, 1978

    Article  Google Scholar 

  • Kemper HCG, Vershuur R, Ras KGA, Snel J, Splinter PG, et al. Investigation into the effect of two extra physical education lessons per week during one school year upon the physical development of 12- and 13-year old boys. In Borms J & Hebbelinck M (Eds) Pediatric work physiology pp. 159–166, S Karger AG, Basel 1978

    Google Scholar 

  • Klesges LM, Klesges RC. The assessment of children’s physical activity: a comparison of methods. Medicine and Science in Sports and Exercise 19: 511–517, 1987

    Article  PubMed  CAS  Google Scholar 

  • Klesges RC, Haddock CK, Eck LH. A multimethod approach to the measurement of childhood physical activity and its relationship to blood pressure and body weight. Journal of Pediatrics 116: 888–893, 1990

    Article  PubMed  CAS  Google Scholar 

  • Knuttgen HG, Steendahl K. Fitness of Danish schoolchildren during the course of one academic year. Research Quarterly 34: 34–40, 1963

    Google Scholar 

  • Kobayashi K, Kitamura K, Miura M, Sodeyama H, Murase Y, et al. Aerobic power as related to body growth and training in Japanese boys: a longitudinal study. Journal of Applied Physiology 44: 666–672, 1978

    PubMed  CAS  Google Scholar 

  • Kofsky PR, Goode RC, Romet TT. Effects of short period of intense activity on school children. Australian Journal of Sports Medicine 3: 19–21, 1983

    Google Scholar 

  • Krahenbuhl GS, Skinner JS, Kohrt WM. Developmental aspects of maximal aerobic power in children. Exercise and Sports Sciences Review 13: 503–538, 1985

    CAS  Google Scholar 

  • Larson RL. Physical activity and the growth and development of bone and joint structure. In Rarick GL (Ed.) Physical activity, human growth and development, pp. 32–59, Academic Press, New York, 1973

    Google Scholar 

  • Lavallée H, Shephard RJ, Jéquier J-C, Rajic M, LaBarre R, et al. Programme d’activités physiques imposé et activités parascolaires libres dans l’étude longitudinale de Trois Rivières. In Lavallée H & Shephard RJ (Eds) Croissance et développement de l’enfant, pp. 61–72, Université de Québec à Trois Rivières, 1982

    Google Scholar 

  • Lussier L, Buskirk ER. Effect of an endurance training regimen on assessment of work capacity on prepubertal children. Annals of the New York Academy of Sciences 301: 734–747, 1977

    Article  PubMed  CAS  Google Scholar 

  • Massicotte DR, MacNab RBJ. Cardiorespiratory adaptations to training at specified intensities in children. Medicine and Science in Sports 6: 242–246, 1974

    PubMed  CAS  Google Scholar 

  • Mirwald RL, Bailey DA, Cameron N, Rasmussen RL. Longitudinal comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. Annals of Human Biology 8: 405–414, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mirwald RL, Bailey DA. Maximal aerobic power, Sports Dynamics, London, Ont, 1986

    Google Scholar 

  • Mocellin R, Wasmund U. Investigations on the influence of a running training programme on the cardiovascular and motor performance capacity in 53 boys and girls of a second and third primary school class. In Bar-Or O (Ed.) Pediatric work physiology IV. pp. 279–288, Wingate Institute, Natanya, Israel, 1973

    Google Scholar 

  • Mukeshi M, Gutin B, Anderson W, Zybert P, Basch C. Validation of the Caltrac movement sensor using direct observation in young children. Pediatric Exercise Science, 2: 249–254, 1990

    Google Scholar 

  • Murdoch E. Physical education and sport: the interface. In Armstrong N (Ed.) New directions in physical education, Vol. 1, pp. 63–77, Human Kinetics, Leeds, 1990

    Google Scholar 

  • Noland M, Danner F, Dewalt K, McFadden M, Kotchen JM. The measurement of physical activity in young children. Research Quarterly 61: 146–153, 1990

    CAS  Google Scholar 

  • O’Hara NM, Baranowski T, Simons-Morton BG, Wilson BS, Parcel GS. Validity of the observation of children’s physical activity. Research Quarterly 60: 42–47, 1989

    Google Scholar 

  • Oseid S, Edwards AM. The asthmatic child in play and sport. Pitman, London, 1983

    Google Scholar 

  • Pate RR, Blair SN. Exercise and the prevention of atherosclerosis: pediatric implications. In Strong (Ed.) Atherosclerosis: its pediatric aspect, Chap. 13, Grune and Stratton, New York, 1978

    Google Scholar 

  • Pfeiffer R, Francis RS. Effects of strength training on muscle development in prepubescent, pubescent and postpubescent males. Physician and Sportsmedicine 14(9): 134–143, 1986

    Google Scholar 

  • Puhl J, Greaves K, Hoyt M, Baranowski T. Childrens activity rating scale (CARS): description and calibration. Research Quarterly 61: 26–36, 1990

    CAS  Google Scholar 

  • Robbins SG. A survey of schools with quality daily physical education. CAHPER Journal 53(6): 10–13, 1987

    Google Scholar 

  • Rode A, Bar-Or O, Shephard RJ. Cardiac output and oxygen conductance. A comparison of Canadian Eskimo and city dwellers. In Bar-Or O (Ed.) Pediatric work physiology, Wingate Institute, Natanya, Israel, 1973

    Google Scholar 

  • Rose KD. Relationship of cardiac problems to athletic participation. Journal of the American Medical Association 208: 2319–2324, 1969

    Article  PubMed  CAS  Google Scholar 

  • Rotstein A, Dotan R, Bar-Or O, Tenenbaum G. Effects of training on anaerobic threshold, maximal aerobic power and anaerobic performance of preadolescent boys. International Journal of Sports Medicine 7: 281–286, 1986

    Article  PubMed  CAS  Google Scholar 

  • Rowland TW. Aerobic response to endurance training in pre-pubescent children: a critical analysis. Medicine and Science in Sports and Exercise 17: 493–497, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rowland TW. Oxygen uptake and endurance fitness in children: a developmental perspective. Pediatric Exercise Science 1: 313–328, 1989

    Google Scholar 

  • Rowland TW. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Medicine 10: 255–266, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sady SP. Cardiorespiratory exercise training in children. Clinics in Sports Medicine 5: 493–514, 1986

    PubMed  CAS  Google Scholar 

  • Saltin B. Oxygen transport by the circulatory system during exercise in man. In Keul (Ed.) Limiting factors of physical performance, pp. 235–252, G. Thieme, Stuttgart, 1973

    Google Scholar 

  • Schmucker B, Hollman W. The aerobic capacity of trained athletes from 6 to 7 years of age. Acta Paediatrica Belgica 28 (Suppl.): 92–104, 1974

    PubMed  Google Scholar 

  • Seligar V, Trefny Z, Bartunkova S, Pauer M. The habitual physical activity and physical fitness of 12 year old boys. Acta Paediatrica Belgica 28 (Suppl.): 92–104, 1974

    Google Scholar 

  • Shasby GB, Hagerman FC. The effects of conditioning on cardiorespiratory function in adolescent boys. Journal of Sport Medicine 97–107, 1975

    Google Scholar 

  • Shephard RJ. Learning, habituation and training. Internationale Zeitschrift für Angewandte Physiologie 28: 38–48, 1969

    CAS  Google Scholar 

  • Shephard RJ. Intensity, duration and frequency of exercise as determinants of the response to a training regime. Internationale Zeitschrift für Angewandte Physiologie 26: 272–278, 1968

    CAS  Google Scholar 

  • Shephard RJ. Endurance fitness, 2nd ed, University of Toronto Press, Toronto, 1977

    Google Scholar 

  • Shephard RJ. Exercise for the asthmatic patient: a brief historical review. Journal of Sports Medicine and Physical Fitness 18: 301–307, 1979

    Google Scholar 

  • Shephard RJ. Physical activity and growth, Year Book Publishers, Chicago, 1982a

    Google Scholar 

  • Shephard RJ. Physiology and biochemistry of exercise, Praeger Publishing, New York, 1982b

    Google Scholar 

  • Shephard RJ. Fitness of a nation: lessons from the Canada Fitness Survey, Karger, Basel, 1986

    Google Scholar 

  • Shephard RJ. Fitness in special populations, Human Kinetics Publishers, Champaign, Ill., 1990a

    Google Scholar 

  • Shephard RJ. Training programmes and aerobic power of young children. Hermes (Leuven) 21: 387–403, 1990b

    Google Scholar 

  • Shephard RJ, Allen C, Bar-Or O, Davies CTM, Degré S, et al. The working capacity of Toronto schoolchildren. Canadian Medical Association Journal 100: 560–566, 705-714, 1969

    PubMed  CAS  Google Scholar 

  • Shephard RJ, Lavallée H, LaRivière G, Rajic M, Brisson GR, et al. La capacité physique des enfants Canadiens: une comparaison entre les enfants Canadiens francais, Canadiens anglais et Esquimaux. I. Consommation maximale d’oxygène et débit cardiaque. Union Médicale du Canada 103: 1767–1777, 1974

    PubMed  CAS  Google Scholar 

  • Shephard RJ, Lavallée H, Larivière G, Rajic M, Brisson GR, et al. La capacité physique des enfants Canadiens: une comparaison entre les enfants Canadiens-francais, Canadiens-anglais et Esquimaux. III. Psychologie et sociologie des enfants Canadiens-francais. Union Médicale du Canada 104: 1131–1136, 1975

    PubMed  CAS  Google Scholar 

  • Shephard RJ, Lavallée H, Jéquier J-C, et al. Un programme complémentaire d’éducation physique: étude préliminaire de l’expérience pratiqueée dans le district de Trois Rivières. In LaCour JR (Ed.) Facteurs limitant l’endurance humaine: les techniques d’amélioration de la performance, pp. 43–54, Université de St Etienne, France, 1977

    Google Scholar 

  • Shephard RJ, Lavallée H, Jéquier J-C, LaBarre R, Rajic M, et al. Seasonal differences in aerobic power. In Shephard RJ & Lavallée H (Eds) Physical fitness assessment: principles, practice and applications, pp. 194–210, CC Thomas, Springield, Ill., 1978a

    Google Scholar 

  • Shephard RJ, Lavallée H, Rajic M, Jéquier J-C, Brisson GR, et al. Radiographic age in the interpretation of physiological and anthropological data. In Borms J & Hebbelinck M (Eds) Pediatric work physiology, pp. 124–133, Karger AG, Basel, 1978b

    Google Scholar 

  • Shephard RJ, Jéquier J-C, Lavallée H, LaBarre R, Rajic M, et al. Habitual activity: effects of sex, milieu, season and required activity. Journal of Sports Medicine and Physical Fitness 20: 55–66, 1980a

    PubMed  CAS  Google Scholar 

  • Shephard RJ, Lavallée H, LaBarre R, Jéquier J-C, Volle M, et al. On the basis of data standardisation in pre-pubescent children, In Ostyn M et al. (Eds) Kinanthropometry 11, Karger AG, Basel, 1980b

    Google Scholar 

  • Shephard RJ, Lavallée H, Rajic M, Jéquier J-C, Volle M. Body dimensions of Québecois children. Annals of Human Biology 11: 243–252, 1984

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ, Ward GR, Lee M. Physical ability of deaf and blind children. In Rutenfranz J, et al. (Eds) Children and exercise XII, pp. 355–362, Human Kinetics, Champaign, Ill., 1987

    Google Scholar 

  • Sherif CW, Rattray GD. Psychological development and activity in middle-childhood (5–12 years). In Albinson JG & Andrew GM (Eds.) Child in sport and physical activity, pp. 97–132, University Park Press, Baltimore, 1976

    Google Scholar 

  • Sleap M. Promoting health in primary school physical education. In Armstrong N, (Ed.) New directions in physical education, Vol. 1, pp. 17–36, Human Kinetics, Leeds, 1990

    Google Scholar 

  • Sprynarova S. Development of the relationship between aerobic capacity and the circulatory and respiratory reaction to moderate activity in boys 11–13 years old. Physiologica Bohemos-lovenica 15: 253–264, 1966

    CAS  Google Scholar 

  • Stewart KJ, Gutin B. Effects of physical training on cardiorespiratory fitness in children. Research Quarterly 47: 110–120, 1976

    PubMed  CAS  Google Scholar 

  • Sunnegardh J, Bratteby LE. Maximal oxygen uptake, anthropometry and physical activity in a randomly selected sample of 8 and 13 year old children in Sweden. European Journal of Applied Physiology 56: 266–272, 1987

    Article  CAS  Google Scholar 

  • Treiber FA, Musante L, Hartdagan S, Davis H, Levy M, et al. Validation of a heart rate monitor with children in laboratory and field settings. Medicine and Science in Sports and Exercise 21: 338–342, 1989

    Article  PubMed  CAS  Google Scholar 

  • Trottier A. Results of a national survey on Physical Education in the Provinces. CAHPER Journal 53(6): 8–9, 1987

    Google Scholar 

  • Tucker LA. The relationship of television viewing to physical fitness and obesity. Adolescence 21: 797–806, 1986

    PubMed  CAS  Google Scholar 

  • Vaccaro P, Mahon AD. Cardiorespiratory responses to endurance training in children. Sports Medicine 4: 352–363, 1987

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro P, Clarke DH. Respiratory alterations in 9 to 11 year olds following a season of competitive swimming. Medicine and Science in Sports and Exercise 10: 204–207, 1978

    CAS  Google Scholar 

  • Vaccaro P, Mahon AD. The effect of exercise on coronary heart disease risk factors in children. Sports Medicine 8: 139–153, 1989

    Article  PubMed  CAS  Google Scholar 

  • Von Döbeln W. Kroppsstorlek, Energiomsätning och Kondition. In Luthman G, et al. (Eds) Handbok i Ergonomi, Almqvist & Wiksell, Stockholm, 1966

    Google Scholar 

  • Washington RL, Van Gundy JC, Cohen C, Sondheimer H, Wolfe R. Normal aerobic and anaerobic exercise data for North American school-age children. Journal of Pediatrics 112: 223–233, 1988

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Kartodihardjo W, Klissouras V. Growth and physical training with reference to heredity. Journal of Applied Physiology 40: 211–215, 1976

    PubMed  CAS  Google Scholar 

  • Weltman A, Janney C, Rians CB, Strand K, Berg B, et al. The effects of hydraulic resistance strength training in pre-pubertal males. Medicine and Science in Sports and Exercise 18: 629–638, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wilmore JH, McNamara JJ. Prevalence of coronary heart disease risk factors in boys 8 to 12 years of age. Journal of Pediatrics 84: 527–533, 1974

    Article  PubMed  CAS  Google Scholar 

  • Wright GR, Sidney KH, Shephard RJ. Variance of direct and indirect measurements of aerobic power. Journal of Sports Medicine and Physical Fitness 18: 33–42, 1978

    PubMed  CAS  Google Scholar 

  • Yoshida TI, Ishiko I, Muraoka I. Effect of endurance training on cardiorespiratory functions of 5-year old children. International Journal of Sports Medicine 1: 91–94, 1980

    Article  Google Scholar 

  • Zauner CW, Maksud MG, Melichna J. Physiological considerations in training young athletes. Sports Medicine 8: 15–31, 1989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shephard, R.J. Effectiveness of Training Programmes for Prepubescent Children. Sports Med 13, 194–213 (1992). https://doi.org/10.2165/00007256-199213030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199213030-00004

Keywords

Navigation