Skip to main content

Advertisement

Log in

Biomechanics of Sprint Running

A Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Understanding of biomechanical factors in sprint running is useful because of their critical value to performance. Some variables measured in distance running are also important in sprint running. Significant factors include: reaction time, technique, electromyographic (EMG) activity, force production, neural factors and muscle structure. Although various methodologies have been used, results are clear and conclusions can be made.

The reaction time of good athletes is short, but it does not correlate with performance levels. Sprint technique has been well analysed during acceleration, constant velocity and deceleration of the velocity curve. At the beginning of the sprint run, it is important to produce great force/ power and generate high velocity in the block and acceleration phases. During the constant-speed phase, the events immediately before and during the braking phase are important in increasing explosive force/power and efficiency of movement in the propulsion phase. There are no research results available regarding force production in the sprint-deceleration phase. The EMG activity pattern of the main sprint muscles is described in the literature, but there is a need for research with highly skilled sprinters to better understand the simultaneous operation of many muscles. Skeletal muscle fibre characteristics are related to the selection of talent and the training-induced effects in sprint running.

Efficient sprint running requires an optimal combination between the examined biomechanical variables and external factors such as footwear, ground and air resistance. Further research work is needed especially in the area of nervous system, muscles and force and power production during sprint running. Combining these with the measurements of sprinting economy and efficiency more knowledge can be achieved in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aura O, Komi P. Mechanical efficiency of pure positive and pure negative work with special reference to the work intensity. International Journal of Sports Medicine 7 (1): 44–49, 1986

    Article  PubMed  CAS  Google Scholar 

  • Amar J. The human motor, 1920. Cited in Dillman CJ. Kinematic analysis of running. Exercise and Sport Sciences Reviews 3: 193–218, 1975

    Google Scholar 

  • Andersson Y, Edström J-E. Motor hyperactivity resulting in diameter decrease of peripheral nerves. Acta Physiologica Scandinavica 39: 240–245, 1957

    Article  PubMed  CAS  Google Scholar 

  • Arbuthnott ER, Boyd IA, Kalu KU. Ultrastructural dimensions of myelinated peripheral nerve fibers in the cat and their relation to conduction velocity. Journal of Physiology 308: 125–157, 1980

    PubMed  CAS  Google Scholar 

  • Atwater AE. Cinematographic analyses of human movement. Exercise and Sport Sciences Reviews 1: 217–228, 1973

    Article  PubMed  CAS  Google Scholar 

  • Bates BT, Haven BH. Effects of fatigue on the mechanical characteristics of highly skilled female runners. In Nelson RC & Morehouse CA (Eds) Biomechanics IV, pp. 121–125, University Park Press, Baltimore, 1974

    Google Scholar 

  • Baumann W. Kinematic and dynamic characteristics of the sprint start. In Komi PV (Ed) Biomechanics V-B, University Park Press, Baltimore, 1976

    Google Scholar 

  • Baumann W. Sprint start characteristics of female sprinters. In Ayab A (Ed.) Proceedings of an international seminar biomechanics of sports games and sport activities, pp. 80–86, Wingate Institute for Physical Education and Sports, Netanya, Israel, 1979

    Google Scholar 

  • Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neutral control during human muscular fatigue. Muscle and Nerve 7: 691–699, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ, Woods JJ. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50(1): 313–325, 1983

    PubMed  CAS  Google Scholar 

  • Bosen KO. Experimental speed training. Track technique (Spring): 2382–2383, 1979

    Google Scholar 

  • Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. Journal of Physiology 263: 467–481, 1977

    Google Scholar 

  • Cavagna GA, Komarek L, Mazzoleni S. The mechanics of sprint running. Journal of Physiology (London) 217: 709–721, 1971

    CAS  Google Scholar 

  • Cavanagh PR, LaFortune MA. Ground reaction forces in distance running. Journal of Biomechanics 15 (5): 397–406, 1980

    Article  Google Scholar 

  • Cavanagh PR, Williams KR. The effect of stride length variation on oxygen uptake during distance running. Medicine and Science in Sports Exercise 14 (1): 30–35, 1982

    Article  CAS  Google Scholar 

  • Cavanagh PR, Pollock ML, Landa J. A biomechanical comparison of elite and good distance runners. In Milvy P (Ed.) The marathon: physiological, medical, epidemiological and psychological studies, pp. 328–345, New York Academy of Sciences, New York, 1977

    Google Scholar 

  • Coppenolle Van H, DeLecluse C, Goris M, Bohets W, Vanden Eynde E. Technology and development of speed. Evaluation of the start, sprint and body composition of Pavoni, Cooman and Desruelles. Athletics Coach 23 (1): 32–90 (1989)

    Google Scholar 

  • Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. Journal of Applied Physiology 40 (2): 149–154, 1976

    PubMed  CAS  Google Scholar 

  • Coyle EF, Feiring DC, Rotkis RC, Cote RW, Roby FB, et al. Specificity of power improvements through slow and fast isokinetic training. Journal of Applied Physiology 51: 1427–1442, 1981

    Google Scholar 

  • Davies CTM. Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 48 (4): 702–709, 1980

    CAS  Google Scholar 

  • Deshon DE, Nelson RC. A cinematographic analysis of sprint running. Research Quarterly 35 (4): 451–455, 1964

    PubMed  CAS  Google Scholar 

  • Dick FW. Developing and maintaining maximum speed in sprints over one year. Athletics Coach 23 (1): 3–8, 1989

    Google Scholar 

  • Dietz V, Schmidtbleicher D, Noth J. Neuronal mechanisms of human locomotion. Journal of Neurophysiology 42: 1212–1222, 1979

    PubMed  CAS  Google Scholar 

  • Dillman CJ. Kinematic analyses of running. Exercise and Sports Sciences Reviews 3: 193–218, 1975

    CAS  Google Scholar 

  • Dostal E. Analyse der Reaktionszeitin im Sprint bei den Euro-pameisterschaften in Prag 1978. In Augustin D & Muller N (Eds) Leichtathletik-training 5/6, pp. 327–331, 1981

    Google Scholar 

  • Eberstein A, Goodgold J. Slow and fast twitch fibers in human skeletal muscle. American Journal of Physiology 215: 535–541, 1968

    PubMed  CAS  Google Scholar 

  • Edds Jr MV. Hypertrophy of nerve fibers to functionally overloaded muscles. Journal of Comparative Neurology 93: 259–275, 1950

    Article  PubMed  Google Scholar 

  • Fohrenbach R, Mader A, Thiele W, Hollman W. Testverfahren und metabolisch orientierte Intensitatssteuerung im Sprint-training mit submaximaler Belastungsstruktur. Leistungssport 16 (5): 15–24, 1986

    Google Scholar 

  • Frederick EC, Howley ET, Powers SK. Lower O2 cost while running in air cushion type shoes. Medicine and Science in Sports and Exercise 12: 81–82, 1982

    Google Scholar 

  • Garnett RAF, O’Donovan MJ, Stephens JA, Taylor A. Motor unit organization of human medial gastrocnemius. Journal of Physiology 287: 33–34, 1978

    Google Scholar 

  • Glaspey S. Soviet sprint training. Track and Field Journal 4: 19–20, 1980

    Google Scholar 

  • Gollnick PD, Armstrong RB, Saubert IV CW, Piehl K, Saltin B. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. Journal of Applied Physiology 33: 312–319, 1972

    PubMed  CAS  Google Scholar 

  • Gregor RJ, Kirkendall D. Performance efficiency of world class female marathon runners. In Biomechanics VI-B, Asmussen E & Jorgensen K (Eds) pp. 40–45. University Park Press, Baltimore, 1978

  • Grieve DW, Pheasant S, Cavanagh PR. Prediction of gastrocnemius length from knee and ankle joint posture. In Asmussen E & Jorgensen K (Eds) Biomechanics VI-A, pp. 405–412, University Park Press, Baltimore, 1978

    Google Scholar 

  • Gundlach H. Laufgestaltung und Schrittgestaltung im 100-m-Lauf. Theorie und Praxis der Körperkultur 3: 35, 1962

    Google Scholar 

  • Häkkinen K, Komi PV, Alén M. Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiologica Scandinavica 125: 587–600, 1985

    Article  PubMed  Google Scholar 

  • Hill AV. Muscular movement in man, McGraw-Hill Book Co. New York, 1927

    Google Scholar 

  • Hoffmann K. Stature, leg length, and stride frequency. Kult Fiz 9, 1964 Translated in Track Technique 46: 1463–1469, 1971

    Google Scholar 

  • Hoffmann K. Stride length and frequency of female sprinters. Treatises, Texts Doc. WSWF Poznan Ser 17, 1967. Translated in Track Technique 48: 1522–1524, 1972

    Google Scholar 

  • Högberg P. Length of stride, stride frequency, flight period, and maximum distance between the feet during running with different speeds. Arbeitsphysiologie 14: 431–436, 1952

    PubMed  Google Scholar 

  • Hoshikawa T, Matsui H, Miyashita M. Analysis of running pattern in relation to speed. In Lerquitins et al. (Eds) Medicine and sport, Vol. 8, Biomechanics III, pp. 342–348, Karger Basel, 1973

    Google Scholar 

  • Hoster M. Weg-, Zeit- und Kraft-Parameter als Einflussgrössen beim Sprintstart in der Leichtathletik. Leistungssport 11 (2): 110–117, 1981

    Google Scholar 

  • Hoster M, May E. Überlegungen zur Biomechanik der Sprint-starts in der Leichtathletik. Leistungssport 8 (3): 267–273, 1978

    Google Scholar 

  • Ito A, Komi PV, Sjödin B, Bosco C, Karlsson J. Mechanical efficiency of positive work in running at different speeds. Medicine and Science in Sports Exercise 15 (4): 299–308, 1983

    Article  CAS  Google Scholar 

  • Kamen G, Taylor P, Beehler PJ. Ulnar and posterior tibial nerve conduction velocity in athletes. International Journal of Sports Medicine 5(1): 26–30, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Ito A, Fuchimoto T, Shishikura Y, Toyooka J. Influence of running speed on the mechanical efficiency of sprinters and distance runners. In Winter DA et al. (Eds) Biomechanics IX-B, pp. 307–312, Human Kinetics Publishers, Champaign, Ill., 1985

    Google Scholar 

  • Knuttgen HG. Oxygen uptake and pulse rate while running with undetermined and determined stride lengths at different speeds. Acta Physiologica Scandinavica 52: 366–371, 1961

    Article  PubMed  CAS  Google Scholar 

  • Komi PV. Biomechanical features of running with special emphasis on load characteristics and mechanical efficiency. In Nigg B & Kerr B (Eds) Biomechanical aspects of sport shoes and playing surfaces, pp. 123–134, University of Calgary, Calgary, 1983

    Google Scholar 

  • Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. In exercise and sport sciences reviews, Terjung RL (Ed.) pp. 81–121, The Collamore Press, Toronto, 1984

    Google Scholar 

  • Komi PV. The musculoskeletal system. In Dirix A (Ed.) The Olympic book of sports medicine, Blackwell Scientific Publications, Oxford, 1988

    Google Scholar 

  • Komi PV, Bosco C. Utilization of stored elastic energy in men and women. Medicine and Science in Sports 10: 261–265, 1978

    PubMed  CAS  Google Scholar 

  • Komi PV, Salonen M, Järvinen M, Kokko O. In vivo registrations of achilles tendon forces in man. I. Methodological development. International Journal of Sports Medicine 8 (Suppl.): pp. 3–8, 1987

    Article  PubMed  Google Scholar 

  • Komi PV, Viitasalo JT, Havu M, Thorstensson A, Sjodin B, et al. Skeletal muscle fibers and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiologica Scandinavica 100: 385–392, 1977

    PubMed  CAS  Google Scholar 

  • Kunz H, Kaufmann DA. Annotation biomechanical anlysis of sprinting: decathletes versus champions. British Journal of Sports Medicine 15 (3): 177–181, 1981

    Article  PubMed  CAS  Google Scholar 

  • Lastovka M. The conduction velocity of the peripheral motor nerve fibres and physical training. Activitas Nervosa Superior 11: 308, 1969

    PubMed  CAS  Google Scholar 

  • Lehnert VK, Weber J. Untersuchungen des motorischen Nervenleitgeschwindigkeit (NLG) der Nervus ulnaris an Sportlern. Medizin und Sport 15: 10–14, 1975

    Google Scholar 

  • Leierer W. A guide for sprint training. Athletic Journal 59 (6): 105–106, 1979

    Google Scholar 

  • Luhtanen P, Komi PV. Mechanical factors influencing running speed. In Asmussen E & Jörgensen K (Eds) Biomechanics VI-B, pp. 23–29, University Park Press, Baltimore, 1978

    Google Scholar 

  • Luhtanen P, Komi PV. Force-, power-, and elasticity-velocity relationship in walking, running and jumping. European Journal of Applied Physiology 44 (3), 279–289, 1980

    Article  CAS  Google Scholar 

  • Mann R, Herman J. Kinematic analysis of Olympic sprint performance: men’s 200 meters. International Journal of Sport Biomechanics 1: 151–162, 1985

    Google Scholar 

  • Melvill-Jones G, Watt DGD. Observations on the control of stepping and hopping movements in man. Journal of Physiology (London) 219: 709–727, 1971

    Google Scholar 

  • Menely CR, Rosemier AR. Effectiveness of four track starting positions on acceleration. Research Quarterly 39 (1): 161–165, 1969

    Google Scholar 

  • Mero A. Nopeus huippupikajuoksijoilla Helsingin MM-kisoissa. Valmennus ja Kuntoilu 5: 20–22, 1985

    Google Scholar 

  • Mero A. Electromyographic activity, force and anaerobic energy production in sprint running with special reference to different constant speeds ranging from submaximal to supramaximal. In studies in sport, physical education and health 24, University of Jyväskylä, Jyväskylä, 1987

    Google Scholar 

  • Mero A. Force-time characteristics and running velocity of male sprinters during the acceleration phase of sprinting. Research Quarterly for Exercise and Sport 59 (2): 94–98, 1988

    Google Scholar 

  • Mero A, Artman V. Reaktioajat Helsingin MM-kisojen pikaja aitajuoksuissa. SUL-tiedote 8: 3–16, 1984

    Google Scholar 

  • Mero A, Komi PV. Effects of supramaximal velocity on biomechanical variables in sprinting. International Journal of Sport Biomechanics 1: 240–252, 1985

    Google Scholar 

  • Mero A, Komi PV, Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. European Journal of Applied Physiology 55: 553–561, 1986

    Article  CAS  Google Scholar 

  • Mero A, Komi PV. Electromyographic activity in sprinting at speeds ranging from submaximal to supramaximal. Medicine and Science in Sports Exercise 19 (3): 266–274, 1987a

    CAS  Google Scholar 

  • Mero A, Komi PV. Effects of stimulated supramaximal sprinting on force production, neural activation and blood lactate. XI International Congress of Biomechanics, Amsterdam, 1987b

    Google Scholar 

  • Mero A, Komi PV. Reaction time and electromyographic activity during a sprint start. European Journal of Applied Physiology 61: 73–80, 1990

    Article  CAS  Google Scholar 

  • Mero A, Peltola E. Neural activation in fatigued and nonfatigued conditions of short and long sprint running. Biology of Sport 6(1): 43–57, 1989

    Google Scholar 

  • Mero A, Luhtanen P, Viitasalo JT, Komi PV. Relationships between the maximal running velocity, muscle fiber characteristics, force production and force relaxation of sprinters. Scandinavian Journal of Sports Sciences 3 (1): 16–22, 1981

    Google Scholar 

  • Mero A, Luhtanen P, Komi PV. Zum Einfluss von Kontaktph-asenmerkmalen auf die Schrittfrequenz beim Maximal-sprint. Leistungssport 12 (4): 308–313, 1982

    Google Scholar 

  • Mero A, Luhtanen P, Komi PV. A biomechanical study of the sprint start. Scandinavian Journal of Sports Sciences 5(1): 20–28, 1983

    Google Scholar 

  • Mero A, Komi PV, Rusko H, Hironen J. Neuromuscular and anaerobic performance of sprinters at maximal and supramaximal speed. International Journal of Sports Medicine 8 (Suppl.): 55–60, 1987

    Article  PubMed  Google Scholar 

  • Mero A, Luhtanen P, Komi PV, Susanka P. Kinematics of top sprint (400m) running in fatigued conditions. Track and Field Quaterly Review 88 (1): 42–45, 1988

    Google Scholar 

  • Miller DI. Biomechanical considerations in lower extremity amputee running and sports performance. In Wood GA (Ed.) Collected papers on sports biomechanics, pp. 74–96, The University of Western Australia, 1983

    Google Scholar 

  • Moravec P, Ruzicka J, Susanka P, Dostal E, Kodejs M, Nosek M. The 1987 International Athletic Foundation/IAAF Scientific Project Report: time analysis of the 100 metres events at the II World Championships in Athletics. New Studies in Athletics 3: 61–96, 1988

    Google Scholar 

  • Morton RH. Mathematical representation of the velocity curve of sprint running. Canadian Journal of Applied Sport Sciences 10(4): 166–170, 1985

    CAS  Google Scholar 

  • Paintal AS. Conduction in mammalian nerve fibers. In Desmedt JE (Ed.) New developments in electromyography and clinical neurophysiology pp. 19–41, Karger, Basel, 1973

    Google Scholar 

  • Payne AH. Foot to ground contact forces of elite runners. In Matsui H & Kobayashi K (Eds) Biomechanics VIII-B, pp. 746–753, Human Kinetics Publishers, Champaign, Ill., 1983

    Google Scholar 

  • Roy B. Caracteriques biomecaniques de la course d’endurance. Canadian Journal of Applied Sport Sciences 7 (2): 104–115, 1982

    CAS  Google Scholar 

  • Singh M, Irwin D, Gutoski FP. Effect of high speed treadmill and sprint training on stride length rate. Presented at the International Congress on Physical Activity Sciences, Quebec City, 1976

    Google Scholar 

  • Slocum DB, Bowerman W. The biomechanics of running. Clinical Orthopaedics and Related Research 23: 39–45, 1962

    CAS  Google Scholar 

  • Sprague P, Mann RV. The effects of muscular fatigue on the kinetics of sprint running. Research Quarterly for Exercise and Sport 54 (1): 60–66, 1983

    Google Scholar 

  • Tabatschnik B, Sultanow N, Rjaskin W. Ein Ansatz zur Spezialisierung des Trainings in Abhangigkeit von den individuellen Besonderheiten des Sportlers — am Beispiel des Sprints. Leistungssport 6: 491–494, 1978

    Google Scholar 

  • Tomanek RJ, Tipton CM. Influence of exercise and tenectomy on the morphology of a muscle nerve. Anatomical Record 159: 105–114, 1967

    Article  PubMed  CAS  Google Scholar 

  • Volkov NI, Lapin VI. Analysis of the velocity curve in sprint running. Medicine and Science in Sports 11 (4): 332–337, 1979

    PubMed  CAS  Google Scholar 

  • Waxman SG. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3: 141–150, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wedeles CHA. The effects of increasing the functional load of muscle on the composition of its motor nerve. Journal of Anatomy 83: 57, 1949

    PubMed  CAS  Google Scholar 

  • Williams KR. A biomechanical evaluation of distance running efficiency. PhD dissertation, Pennsylvania State University, 1980

    Google Scholar 

  • Williams KR. Biomechanics of running. In Exercise and Sport Sciences Reviews Terjung RL (Ed.) vol 3, pp. 389–442, 1985

    Google Scholar 

  • Williams KR, Cavanagh PR. A model for the calculation of mechanical power during distance running. Journal of Biomechanics 16(2): 115–128, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wood GA. Biomechanical limitations to sprint running. Medicine and Sport Sciences 25: 58–71, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mero, A., Komi, P.V. & Gregor, R.J. Biomechanics of Sprint Running. Sports Medicine 13, 376–392 (1992). https://doi.org/10.2165/00007256-199213060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199213060-00002

Keywords

Navigation