Skip to main content
Log in

The Effect of Endurance Training on Reproductive Function in Male Runners

A ‘Volume Threshold’ Hypothesis

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Investigations on reproductive function in male athletes are not as abundant in the literature as the research available on female athletes. The primary reason for this is the absence of an obvious clinical sign indicative of an alteration in reproductive function in male athletes. While alterations in the reproductive status of female athletes may be easily detected by the loss of menstrual regularity, a distinctive clinical sign reflective of reproductive dysfunction in the male is not apparent.

In male runners, an effect of endurance training on reproductive function related to a specific ‘volume threshold’ of training is proposed. Data are supportive of this ‘volume threshold’ effect, provided careful and consistent definitions of volume of training are applied. In fact, if volume of training is carefully defined endurance-trained male runners exhibit a rather consistent range of subclinical modifications in the gonadal hormones and semen profile, and clinical (oligospermia) alterations in reproductive function. The precise mechanism responsible for these observed alterations remains unknown, although several peripheral and central mechanisms have been suggested. Clearly, more research is necessary to confirm, and to elucidate, the nature of the ‘volume threshold’ hypothesis in male runners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Souza MJ, Maguire MS, Maresh CM, et al. Adrenal activation and the prolactin response to exercise in eumenorrheic and amenorrheic runners. J Appl Physiol 1991; 70: 2378–87

    PubMed  Google Scholar 

  2. De Souza MJ, Arce JC, Nulsen JC. Effects of exercise training on sex steroids: endocrine profile and clinical implications. Infert Repr Med Clin North Am 1992; 3: 129–48

    Google Scholar 

  3. De Souza MJ, Luciano AA, Arce JC, et al. Clinical tests explain blunted Cortisol responsiveness but not mild hypercortisolism in amenorrheic runners. J Appl Physiol 1994; 76(3): 1302–9

    PubMed  Google Scholar 

  4. Loucks AB, Mortola JF, Girton L, et al. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab 1989; 68: 402–11

    Article  PubMed  CAS  Google Scholar 

  5. De Souza MJ, Arce JC, Pescatello LS, et al. Gonadal hormones and semen quality in male runners: a volume threshold effect. Int J Sports Med 1994; 15: 383–91

    Article  PubMed  Google Scholar 

  6. Arce JC, De Souza MJ. Exercise and male factor infertility. Sports Med 1992; 15(3): 146–69

    Article  Google Scholar 

  7. Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 1988; 20: 60–5

    Article  PubMed  CAS  Google Scholar 

  8. Hackney AC, Sinning WE, Bruot BC. Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int J Sports Med 1990; 34: 949–54

    Google Scholar 

  9. MacConnie SE, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 1986; 315: 411–7

    Article  PubMed  CAS  Google Scholar 

  10. McColl EM, Wheeler GD, Gomes P, et al. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol 1989; 31: 617–21

    Article  CAS  Google Scholar 

  11. Wheeler GD, Wall SR, Beicastro AN, et al. Reduced serum testosterone and prolactin levels in male distance runners. JAMA 1984; 252: 514–6

    Article  PubMed  CAS  Google Scholar 

  12. Wheeler GD, Singh M, Pierce WD, et al. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J Clin Endocrinol Metab 1991; 72: 422–5

    Article  PubMed  CAS  Google Scholar 

  13. Wheeler GD, Wall SR, Beicastro AN, et al. Are anorexic tendencies prevalent in the habitual runner? Br J Sports Med 1986; 20: 77–81

    Article  PubMed  CAS  Google Scholar 

  14. Gutin B, Alejandro D, Duni T, et al. Levels of serum hormones and risk factors for coronary artery disease in exercise-trained men. Am J Med 1985; 79: 79–84

    Article  PubMed  CAS  Google Scholar 

  15. Mathur DN, Toriola AL, Dada QA, et al. Serum Cortisol and testosterone levels in conditioned male distance runners and nonrunners after maximal exercise. J Sports Med Phys Fitness 1986; 26: 245–50

    PubMed  CAS  Google Scholar 

  16. Arce JC, De Souza MJ, Pescatello LS, et al. Subclinical alterations in hormone and semen profile in athletes. Fertil Steril 1993; 59(2): 398–404

    PubMed  CAS  Google Scholar 

  17. Negro-Vilar A, Valenca MM. Male neuroendocrinology and endocrine evaluation of reproductive disorders. In: Lamb et al., editors. Physiology and toxicology of male reproduction. San Diego: Academic Press, 1988: 103–31

    Google Scholar 

  18. Bagatell CJ, Bremner WJ. Sperm counts and reproductive hormones in male marathoners and lean controls. Fertil Steril 1990; 53: 688–92

    PubMed  CAS  Google Scholar 

  19. Griffith RO, Dressendorfer RH, Fullbright CD, et al. Testicular function during exhaustive endurance training. Physician Sportsmed 1990; 18: 54–64

    Google Scholar 

  20. Ayers JWT, Komesu Y, Romani T, et al. Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil Steril 1985; 43: 917–21

    PubMed  CAS  Google Scholar 

  21. Jensen CE, Wiswedel K, McLoughlin J, et al. Prospective study of hormonal and semen profiles in marathon runners. Fertil Steril 1995; 64: 1189–96

    PubMed  CAS  Google Scholar 

  22. Roberts AC, McClure RD, Weiner RI, et al. Overtraining affects male reproductive status. Fert Steril 1993; 60: 686–92

    CAS  Google Scholar 

  23. Cadoux-Hudson TA, Few JD, Imms FJ. The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol 1985; 54: 321–5

    Article  CAS  Google Scholar 

  24. Ishumura T, Edministon WA, Pages L, et al. Splanchnic extraction and conversion of testosterone and dihydrotestosterone in man. J Clin Endocrinol Metab 1978; 46: 528–33

    Article  Google Scholar 

  25. Rowell LB, Blackmon JR, Bruce RA. Indocyanine green clearance and estimated hepatic blood flow during mild to maximum exercise in upright man. J Clin Invest 1964; 43: 1677–90

    Article  PubMed  CAS  Google Scholar 

  26. Sutten JR, Coleman MJ, Casey J, et al. Androgen response during physical exercise. BMJ 1973; 1: 520–2

    Article  Google Scholar 

  27. Cumming DC, Brunsting LA, Strich G, et al. Reproductive hormone increases in response to acute exercise in men. Med Sci Sports Exerc 1986; 18: 369–73

    PubMed  CAS  Google Scholar 

  28. Vogel RB, Books CA, Ketchum C, et al. Increase of free and total testosterone during submaximal exercise in normal males. Med Sci Sports Exerc 1984; 17: 119–23

    Google Scholar 

  29. Snowkowski M, Saartik T, Dahlberg E, et al. Androgen and glucocorticoid receptors in human skeletal cytosol. J Steriod Biochem 1981; 14: 765–71

    Article  Google Scholar 

  30. Stenstad P, Eik-Nes KB. Androgen metabolism in rat skeletal muscle in vitro. Biochim Biophys Acta 1981; 663: 169–76

    Article  PubMed  CAS  Google Scholar 

  31. Dahlman B, Widjaja A, Reinauer H. Antgonistic effect of endurance training and testosterone on alkaline proteolytic activity in rat skeletal muscles. Eur J Appl Physiol 1981; 46: 229–35

    Article  Google Scholar 

  32. Dohm GL, Louis TM. Changes in androstenedione, testosterone and protein metabolism as a result of exercise. Proc Soc Exp Bio Med 1978; 158: 622–5

    CAS  Google Scholar 

  33. Cumming DC, Wheeler GD, McColl EM. The effects of exercise on reproductive function in men. Sports Med 1989; 7(1): 1–17

    Article  PubMed  CAS  Google Scholar 

  34. Rogol A D, Veldhuis JD, Williams FA, et al. Pulsatile secretion of gonadotropins and prolactin in male marathon runners. J Androl 1984; 5: 21–7

    PubMed  CAS  Google Scholar 

  35. Veldhuis JD, King JC, Urban RJ, et al. Operating characteristics of the male hypothalamo-pituitary-gonadal axis: pulsatile release of testosterone and follicle-stimulating hormone and their temperal coupling with luteinizing hormone. J Clin Endocrinol Metab 1987; 65: 929–41

    Article  PubMed  CAS  Google Scholar 

  36. Bambino TH, Hsueh AJW. Direct inhibitory effect of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinology 1981; 108: 2142–8

    Article  PubMed  CAS  Google Scholar 

  37. Cumming DC, Quigley ME, Yen SSC. Acute suppression of circulating testosterone levels by Cortisol in men. J Clin Endocrinol Metab 1983; 57: 671–3

    Article  PubMed  CAS  Google Scholar 

  38. Doerr P, Pirke KM. Cortisol induced suppression of plasma testosterone in normal adult males. J Clin Endocrinol Metab 1986; 43: 622–9

    Article  Google Scholar 

  39. Saez JM, Morera AM, Haourf, et al. Effect of in vivo administration of dexamethasone, corticotropin and human chorionic gonadotropin on steroidogenesis and protein and DNA synthesis of testicular interstitial cells in prepuberal rats. Endocrinology 1987; 101: 1256–63

    Article  Google Scholar 

  40. Luger A, Deuster PA, Kyle SB, et al. Acute hypothalamic-pituitary-adrenal responses to the stresses of treadmill exercise: physiologic adaptations to physical training. N Engl J Med 1987; 316: 1309–15

    Article  PubMed  CAS  Google Scholar 

  41. Almeida OFX, Nikolaris KE, Herz. Evidence for the involvement of endogenous opiods in the inhibition of luteinizing hormone by corticotropin-releasing factor. Endocrinology 1988; 122: 1034–41

    Article  PubMed  CAS  Google Scholar 

  42. Inder WJ, Hellemans J, Ellis MJ, et al. Elevated basal adrenocorticotropin and evidence for increased opioid tone in highly trained male athletes. J Clin Endocrinol Metab 1995; 80: 244–8

    Article  PubMed  CAS  Google Scholar 

  43. Dubey AK, Cameron JL, Steiner RA, et al. Inhibition of gonadotropin secretion in castrated male rhesus monkeys (Macaca mulatta) induced by dietary restriction: analog with prepubertal hiatus of gonadotropin release. Endocrinology 1986; 118: 518–25

    Article  PubMed  CAS  Google Scholar 

  44. Ambrosi B, Gaggini M, Travaglini P, et al. Hypothalamic-pituitary-testicular function in men with prl-secreting tumors. J Endocrinol Invest 1981; 4: 309–15

    PubMed  CAS  Google Scholar 

  45. Chaouloff F. Physical exercise and brain monoamines; a review. Acta Physiol Scand 1989; 137: 1–13

    Article  PubMed  CAS  Google Scholar 

  46. Loucks AB, Girton L, Mortola J, et al. Effect of opioidergic and dopaminergic blockade on LH pulsatility in athletic women. Med Sci Sport Exerc 1991; 23: S123

    Google Scholar 

  47. Russel JB, De Cherney AH, Collins DC. The effect of naloxone and metaclopromide on the hypothalamic pituitary axis in oligomenorrheic and eumenorrheic swimmers. Fertil Steril 1989; 52: 583–8

    Google Scholar 

  48. MacArthur JW. Endorphins and exercise in females: possible connection with reproductive dysfunction. Med Sci Sports Exerc 1985; 17: 82–8

    Google Scholar 

  49. Carlberg KA, Buckman MT, Peake GT, et al. Body composition of oligo/amenorrheic athletes. Med Sci Sports Exerc 1983; 15: 215–7

    PubMed  CAS  Google Scholar 

  50. Blank JL, Desjardins C. Spermatogenesis is modified by food intake in mice. Biol Reprod 1984; 30: 410–5

    Article  PubMed  CAS  Google Scholar 

  51. Cameron JL, Nosbisch C. Suppression of luteinizing hormone and testosterone secretion during short term food restriction in the adult male rhesus monkey (Macaca mulatta). Endocrinology 1991; 128: 1532–40

    Article  PubMed  CAS  Google Scholar 

  52. Zurbian S, Gomez-Mont F. Endocrine disturbances in human malnutrition. In: Harris P, Marion UF, Thiman KV, editors. Vitamins and hormones. New York: Academic Press, 1952: 97–132

    Google Scholar 

  53. Barr SI, Costill DL. Effect of increased training volume on nutrient intake of male collegiate swimmers. Int J Sports Med 1992; 13: 47–51

    Article  PubMed  CAS  Google Scholar 

  54. Schwab AD, Lippe BM, Chang RJ, et al. Anorexia nervosa. Ann Int Med 1981; 94: 371–81

    Google Scholar 

  55. Yates A, Leehey K, Shisslak C. Running an analogue of anorexia? N Engl J Med 1983; 308: 251–5

    Article  PubMed  CAS  Google Scholar 

  56. Cumming DC, Wheeler GD, Harper VJ. Physical activity, nutrition, and reproduction. Ann NY Acad Sci 1994; 709: 55–76

    Article  PubMed  CAS  Google Scholar 

  57. Strauss RH, Lanese RR, Malrarkey WB. Weight loss in ameteur wrestlers and its effect on serum testosterone levels. JAMA 1985; 254: 3337–9

    Article  PubMed  CAS  Google Scholar 

  58. Helmreich DL, Cameron JL. Suppresssion of luteinizing hormone secretion during food restriction in male rhesus monkeys (Macaca mulatta): failure of naloxone to restore normal pulsatility. Neuroendocrinol 1992; 56: 464–73

    Article  CAS  Google Scholar 

  59. Rodjmark S. Influence of short-term fasting on the pitutary-testicular axis in normal men. Horm Res 1987; 25: 140–6

    Article  Google Scholar 

  60. Cameron JL, Weltzin TE, McConaha C, et al. Slowing of pulsatile luteinizing hormone secretion in men after forty-eight hours of fasting. J Clin Endocrinol Metab 1991; 73: 35–41

    Article  PubMed  CAS  Google Scholar 

  61. Schreihofer DA, Parfitt DB, Cameron, JL. Supression of luteinizing secretion during short-term fasting in male monkeys: the role of metabolic versus stress signals. Endocrinology 1993; 132: 1881–9

    Article  PubMed  CAS  Google Scholar 

  62. Helmreich DL, Mattern LG, Cameron JL. Lack of a role of the hypothalamic-pituitary adrenal axis in the fasting-induced suppression of luteinizing hormone secretion in adult male rhesus monkeys (Macaca mulatto). Endocrinology 1993; 132: 2427–37

    Article  PubMed  CAS  Google Scholar 

  63. Barash IA, Cheung CC, Weigle DS, et al. Leptin is a metabolic signal to the reproductive system. Endocrinology 1996; 137: 3144–7

    Article  PubMed  CAS  Google Scholar 

  64. Laughlin GA, Yen SSC. Hypoleptinemia in women athletes: absence of a diurnal rhythm with amenorrhea. J Clin Endocrinol Metab 1997; 82: 318–21

    Article  PubMed  CAS  Google Scholar 

  65. Zorgniotti AW, editor. Hypothesis to explain subfertile men. In: Temperature and environmental effects on the testis. New York: Plenum Press, 1991: 221–3

  66. Deswames G, Botheral B, Hsiung R, et al. Human scrotal temperature during heat exposure associated with passive leg heating. In: Zorgniotti AW, editor. Temperature and environmental effects on the testis. New York: Plenum Press, 1991: 187–91

    Chapter  Google Scholar 

  67. Kandeel FR, Swerdloff RS. Role of temperature in regulation of spermatogenesis and use of heating as a method for contraception. Fertil Steril 1986; 49: 1–23

    Google Scholar 

  68. Levine RJ, Bordson BL, Mathew RM, et al. Deterioration of semen quality during summer in New Orleans. Fertil Steril 1988; 49: 900–7

    PubMed  CAS  Google Scholar 

  69. Levine RJ, Mathew RM, Chenault CB, et al. Differences in the quality of semen in outdoor workers during summer and winter. N Engl J Med 1990; 232: 12–6

    Article  Google Scholar 

  70. McConnell TR, Sinning WE. Exercise and temperature effects on human sperm production and testosterone levels. Med Sci Sports Exerc 1984; 16: 51–5

    PubMed  CAS  Google Scholar 

  71. Baker ER, Leuker R, Stumpf PG. Relationship of exercise to semen parameters and fertilty success of artifical insemination donors. Fertil Steril 1984; 41: 107S

    Google Scholar 

  72. Tomlinson MJ, Barratt CL, Bolton AE, et al. Round cells and fertilizing capacity: the presence of immature germ cells but not seminal leucocytes are associated with reduced success of in vitro fertilzation. Fertil Steril 1992; 58(6): 1257–9

    PubMed  CAS  Google Scholar 

  73. WHO. Laboratory manual for the examination of human semen and semen-cervical mucus interaction. Cambridge: Cambridge University Press, 1987: 27

    Google Scholar 

  74. Aloia JF, Cohn SH, Baby T, et al. Skeletal mass and body composition in marathon runners. Metabolism 1978; 27: 1793–6

    Article  PubMed  CAS  Google Scholar 

  75. Williams JA, Wagner J, Wasnich R, et al. The effect of long-distance running upon appendicular bone mineral content. Med Sci Sports Exerc 1984; 16: 223–7

    PubMed  CAS  Google Scholar 

  76. MacDougall JD, Webber CE, Martin J, et al. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol 73: 1165–70

  77. Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 1989; 21: 66–70

    Article  PubMed  CAS  Google Scholar 

  78. Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrin Metab 1993; 77: 770–5

    Article  CAS  Google Scholar 

  79. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc 1996; 28: 180–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Souza, M.J., Miller, B.E. The Effect of Endurance Training on Reproductive Function in Male Runners. Sports Med 23, 357–374 (1997). https://doi.org/10.2165/00007256-199723060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199723060-00003

Keywords

Navigation