Skip to main content
Log in

Time in Human Endurance Models

From Empirical Models to Physiological Models

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This article traces the study of interrelationships between power output, work done, velocity maintained or distance covered and the endurance time taken to achieve that objective. During the first half of the twentieth century, scientists examined world running records for distances from <100m to >1000km. Such examinations were empirical in nature, involving mainly graphical and crude curve-fitting techniques. These and later studies developed the use of distance/time or power/time models and attempted to use the parameters of these models to characterise the endurance capabilities of athletes. More recently, physiologists have proposed theoretical models based on the bioenergetic characteristics of humans (i.e. maximal power, maximal aerobic and anaerobic capacity and the control dynamics of the system). These models have become increasingly complex but they do not provide sound physiological and mathematical descriptions of the human bioenergetic system and its observed performance ability. Finally, we are able to propose new parameters that can be integrated into the modelling of the power/time relationship to explain the variability in endurance time limit at the same relative exercise power (e.g. 100% maximal oxygen uptake).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennelly AE. An approximate law of fatigue in the speeds of racing animals. Proc Am Acad Arts Sci 1906; 42 (15): 275–331

    Article  Google Scholar 

  2. Kennelly AE. Changes during the last twenty years in the world’s speed records for racing animals. Proc Am Acad Arts Sci 1926; 61 (11): 486–523

    Article  Google Scholar 

  3. Meade GP. An analytical study of athletic records. The Scientific Monthly 1916; 2: 596–600

    Google Scholar 

  4. Grosse-Lordemann H, Müller EA. Der einfluss der leistung und der arbeitgeschwindigkeit auf das arbeitsmaximum und den workungsgrad beim radfahren. Arbeitsphysiol 1937; 9: 454–75

    Google Scholar 

  5. Tornvall G. Assessment of physical capabilities. Acta Physiol Scand 1963; 58 Suppl.: 201

    Google Scholar 

  6. Purdy JG. Least squares model for the running curve. Res Q 1974; 45: 224–38

    PubMed  CAS  Google Scholar 

  7. Francis AW. Running records. Science 1943; 93: 315–6

    Article  Google Scholar 

  8. Edwards RHT, Toescu V, Gibson H. Historical perspective: a framework for interpreting pathobiological ideas on human muscle fatigue. In: Simon C, Gandevia H, editors. Fatigue. New York: Plenum Press, 1995: 481–94

    Google Scholar 

  9. Henry FM, Farmer DS. Condition ratings and endurance measures. Res Q 1949; 20: 126–33

    PubMed  CAS  Google Scholar 

  10. Henry FM. Time-velocity equations and oxygen requirements of ‘all-out’and ’steady-pace’running. Res Q 1954; 25: 164–77

    Google Scholar 

  11. Lietzke MH. An analytical study of world and Olympic racing records. Science 1954; 119: 333–6

    Article  PubMed  CAS  Google Scholar 

  12. Lietzke MH. Consistent set of running times. Science 1956; 124: 178

    Article  Google Scholar 

  13. Meade GP. Consistent running records. Science 1956; 124: 1025

    Article  PubMed  CAS  Google Scholar 

  14. Péronnet F. Les records du monde de course à pied masculins et féminins: à propos d’un article de la revue ‘Nature’. Rev STAPS 1993; 32: 47–55

    Google Scholar 

  15. Whipp BJ, Ward SA. Will women soon outrun men [letter]? Nature 1992; 355: 25

    Article  PubMed  CAS  Google Scholar 

  16. Henry FM. Prediction of world records in running sixty yards to twenty-six miles. Res Q 1955; 26: 147–58

    Google Scholar 

  17. Craig AB. Evaluation and predictions of world running and swimming records. J SportsMed Phys Fitness 1963; 3: 14–21

    Google Scholar 

  18. Keller JB. A theory of competitive running. Physics Today 1973; 26: 42–7

    Article  Google Scholar 

  19. Ryder HW, Carr HJ, Herget P. Future performance in footracing. Sci Am 1976; 234: 108–19

    Article  Google Scholar 

  20. Frederick EC. A statistical model of endurance in running. Can J Appl Sport Sci 1977; 2: 127–32

    Google Scholar 

  21. Coleman CE, Rumball WM. The fatigue coefficient. Track Technol 1973; 53: 1694–5

    Google Scholar 

  22. Morton RH. The supreme runner: what evidence now? Aust J Sports Sci 1983; 3: 7–10

    Google Scholar 

  23. Morton RH. The supreme runner: a theory of running and some of his physiological attributes. Aust J Sci Med Sport 1984; 16: 26–8

    Google Scholar 

  24. Noakes TD. Lore of running. 3rd ed. Champaign (IL): Leisure Press, 1991

    Google Scholar 

  25. Harman EA, Knuttgen HG, Frykman PN, et al. Exercise endurance time as function of percent maximal power production. Med Sci Sports Exerc 1987; 19: 480–5

    PubMed  CAS  Google Scholar 

  26. Billat V, Pinoteau J, Petit B, et al. Reproducibility of running time to exhaustion at V̇O2max in sub-elite runners. Med Sci Sports Exerc 1994; 26: 254–7

    Article  PubMed  CAS  Google Scholar 

  27. Kachouri M, Vandewalle H, Huet M, et al. Is the time at maximal aerobic speed an index of aerobic endurance? Arch Physiol Biochem 1996; 104: 330–6

    Article  PubMed  CAS  Google Scholar 

  28. Hill AV. Muscular movement in man. New York: McGraw-Hill, 1927: 104

    Google Scholar 

  29. di Prampero PE. The energy cost of human locomotion on land and in water. Int J Sports Med 1986; 7: 55–72

    Article  PubMed  Google Scholar 

  30. Medbo JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64: 50–60

    PubMed  CAS  Google Scholar 

  31. Daniels J, Scardina N, Hayes J, et al. Elite and subelite female middle- and long-distance runners. In: Landers D, editor. Sport and elite performers. Champaign (IL): Human Kinetics, 1984: 57–72

    Google Scholar 

  32. Sargent RM. The relation between oxygen requirement and speed in running. Proc R Soc Lond Ser B 1926; 100: 10–22

    Article  CAS  Google Scholar 

  33. Léger L, Boucher R. An indirect continuous running multistage field test, the université de Montréal Track Test. Can J Appl Sport Sci 1980; 5: 77–84

    PubMed  Google Scholar 

  34. Margaria R, Edwards HT, Dill DB. The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 1933; 106: 689–719

    CAS  Google Scholar 

  35. Scherrer J, Samson M, Paleologue A. Etude du travail musculaire et de la fatigue. J Physiol (Paris) 1954; 46: 887–916

    CAS  Google Scholar 

  36. Monod H. Contribution à l’étude du travail statique. Paris: Thèse de Médecine, 1956: 121

    Google Scholar 

  37. Moritani T, Nagata A, De Vries HA, et al. Critical power as a measure of physical working capacity and anaerobic threshold. Ergonomics 1981; 24: 339–50

    Article  PubMed  CAS  Google Scholar 

  38. Vandewalle H, Kapitaniak B, Grun S, et al. Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. Eur J Appl Physiol 1989; 58: 375–80

    Article  CAS  Google Scholar 

  39. Hughson RL, Orok CJ, Staudt LE. A high velocity running test to assess endurance running potential. Int J Sports Med 1984; 5: 23–5

    Article  PubMed  CAS  Google Scholar 

  40. Lechevalier JM, Vandewalle H, Chatard JC, et al. Relationship between the 4 mMol running velocity, the time-distance relationship and the Leger-Boucher’s test. Arch Int Physiol Biochim 1989; 97: 355–60

    Article  PubMed  CAS  Google Scholar 

  41. Wakayoshi K, Ikuta K, Yoshida T, et al. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol 1992; 64: 153–7

    Article  CAS  Google Scholar 

  42. Wakayoshi K, Yoshida T, Udo M, et al. A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. Int J Sports Med 1992; 13: 367–71

    Article  PubMed  CAS  Google Scholar 

  43. Wilkie DR. Man as a source of mechanical power. Ergonomics 1960; 3: 1–8

    Article  Google Scholar 

  44. Wilkie DR. Equations describing power input by humans as a function of duration of exercise. In: Cerretelli P, Whipp BJ, editors. Exercise bioenergetics and gas exchange. North-Holland: Elsevier, 1980; 75–81

    Google Scholar 

  45. Margaria R, Cerretelli P, Mangili F. Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol 1964; 19: 623–8

    PubMed  CAS  Google Scholar 

  46. di Prampero PE, Davies TM, Cerretelli P, et al. An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol 1970; 29: 547–51

    PubMed  Google Scholar 

  47. Frederick WSF. Physiological aspects of human fatigue. Arch Industr Hlth 1959; 20: 297–302

    Google Scholar 

  48. Lloyd BB. The energetics of running: an analysis of world records. Adv Sci 1966; 22: 515–30

    PubMed  CAS  Google Scholar 

  49. Ettema JH. Limits of human performance and energy-production. Int Z Angew Physiol Einschl Arbeitsphysiol 1966; 22: 45–54

    Google Scholar 

  50. Scherrer J, Monod H. Le travail musculaire local et la fatigue chez l’homme. J Physiol (Paris) 1960; 52: 419–501

    CAS  Google Scholar 

  51. Margaria R, Aghemo P, Pinera Limas F. A simple relation between performance in running and maximal aerobic power. J Appl Physiol 1975; 38: 351–2

    PubMed  CAS  Google Scholar 

  52. Margaria R, Cerretelli P, Aghemo P, et al. Energy cost of running. J Appl Physiol 1963; 18: 367–70

    PubMed  CAS  Google Scholar 

  53. di Prampero PE. Energetics of world records in human locomotion. tiIn: Wieser K,Gaigner L, editors. Energy transformations in cells and organisms. Amsterdam: Wieser et Gnaiger Elsevier, 1989: 248–53

    Google Scholar 

  54. Gleser MA, Vogel JA. Endurance capacity for prolonged exercise on the bicycle ergometer. J Appl Physiol 1973; 34: 438–42

    PubMed  CAS  Google Scholar 

  55. Wasserman K, Mac Ilroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 1964; 14: 844–52

    Article  PubMed  CAS  Google Scholar 

  56. Housh DJ, Housh TJ, Bauge SM. The accuracy of critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics 1989; 32: 997–1004

    Article  PubMed  CAS  Google Scholar 

  57. Camus G, Juchmès J, Thys H, et al. Relation entre le temps limite et la consommation maximale d’oxygène dans la course supramaximale. J Physiol (Paris) 1988; 83: 26–31

    CAS  Google Scholar 

  58. Péronnet F, Thibault G. Analyse physiologique de la performance en course à pied, révision du modèle hyperbolique. J Physiol (Paris) 1987; 82: 52–60

    Google Scholar 

  59. Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol 1989; 67: 453–65

    PubMed  Google Scholar 

  60. Ward-Smith AJ. Amathematical theory of running, based on the first law of thermodynamics and its application to the performance of world-class athletes. J Biomech 1985; 18: 337–49

    Article  PubMed  CAS  Google Scholar 

  61. Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 1972; 5: 351–6

    Google Scholar 

  62. Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 1996; 24: 35–70

    Article  PubMed  CAS  Google Scholar 

  63. Poole DC, Schaffartzik W, Knight DR, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol 1991; 71: 1245–53

    PubMed  CAS  Google Scholar 

  64. Whipp BJ. The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc 1994; 26: 1319–26

    PubMed  CAS  Google Scholar 

  65. Hill D, Billat V, Williams CS, et al. The relationship between running velocity and the time to achieve V̇O2max. J Appl Physiol. In press

  66. Monod H, Sherrer J. The work capacity of a synergic muscular group. Ergonomics 1965; 8: 329–38

    Article  Google Scholar 

  67. Billat V, Koralsztein JP. Significance of the velocity at V̇O2max and its time to exhaustion at this velocity. Sports Med 1996; 22: 90–108

    Article  PubMed  CAS  Google Scholar 

  68. Margaria R. Biomechanics and energetics of muscular exercise. Oxford: Oxford University Press, 1976

    Google Scholar 

  69. Morton RH. On a model of human bioenergetics. Eur J Appl Physiol 1985; 54: 285–90

    Article  CAS  Google Scholar 

  70. Morton RH. A three component model of human bioenergetics. J Math Biol 1986; 24: 451–66

    Article  PubMed  CAS  Google Scholar 

  71. Morton RH. On a model of human bioenergetics: II. Maximal power and endurance. Eur J Appl Physiol 1986; 55: 413–8

    Article  CAS  Google Scholar 

  72. Morton RH. Modelling human power and endurance. J Math Biol 1990; 28: 49–64

    Article  PubMed  CAS  Google Scholar 

  73. Morton RH. A 3-parameter critical power model. Ergonomics 1996; 39: 611–9

    Article  PubMed  CAS  Google Scholar 

  74. McLellan TM, Cheung SY. A comparative evaluation of the individual anaerobic threshold and the critical power. Med Sci Sports Exerc 1992; 24: 543–50

    PubMed  CAS  Google Scholar 

  75. Péres G, Vandewalle H, Monod H. Aspect particulier de la relation charge vitesse lors du pedalage sur cycloergometre. J Physiol (Paris) 1987; 82: 52–60

    Google Scholar 

  76. Billat V, Pinoteau J, Petit B, et al. Time to exhaustion at 100% of velocity at V̇O2max and modelling of the time limit/velocity relationship in elite long distance runners. Eur J Appl Physiol 1994; 69: 271–3

    Article  CAS  Google Scholar 

  77. Billat G, Pinoteau J, Petit B, et al. Speed and time to exhaustion at V̇O2max contribute to long distance performance in sub-elite runners. Science et Motricité 1995; 27: 40–50

    Google Scholar 

  78. Billat V, Beillot J, Rochcongar P, et al. Gender effect on the relationship of time limit at 100% V̇O2max with other bioenergetics characteristics. Med Sci Sports Exerc 1996; 28: 1049–55

    Article  PubMed  CAS  Google Scholar 

  79. Billat V, Faina M, Sardella F, et al. A comparison of time to exhaustion at V̇O2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics 1996; 39: 267–77

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Véronique Billat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billat, L.V., Koralsztein, J.P. & Morton, R.H. Time in Human Endurance Models. Sports Med 27, 359–379 (1999). https://doi.org/10.2165/00007256-199927060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199927060-00002

Keywords

Navigation