Skip to main content

Advertisement

Log in

Sports Haematology

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

While the crucial role of haemoglobin in aerobic exercise has been well accepted, there is still a great deal of controversy about the optimal haematological parameters in the athletic population. The initial part of this review will examine the question of anaemia in athletes. The most common finding in athletes is a dilutional pseudoanaemia that is caused by a plasma volume expansion, rather than an actual blood loss. It is not a pathological state and normalizes with training cessation in 3 to 5 days. This entity should be distinguished from conditions associated with lowered blood counts, such as intravascular haemolysis or iron deficiency anaemia. The evaluation of true anaemia states in the athlete must take into account not only blood losses secondary to exercise, such as foot strike haemolysis or iron losses through sweat, but non-athletic causes as well. Depending on the age and sex of the athlete, consideration must be given to evaluation of the gastrointestinal or genitourinary systems for blood loss. Finally, a comprehensive nutritional history must be taken, as athletes, especially women, are frequently not consuming adequate dietary iron.

The second section of the paper will deal with the very contentious issue of sickle cell trait. While there have been studies demonstrating an increased risk of sudden death in people with sickle cell trait, it is still quite rare and should not be used as a restriction to activity. Further, studies have demonstrated that patients with sickle cell trait have an exercise capacity that is probably normal or near normal. However, in the cases of sudden death, it has been secondary to rhabdomyolysis occurring among sickle cell trait athletes performing at intense exertion under hot conditions, soon after arriving at altitude. The recommendations are that athletes with sickle cell trait adhere to compliance with the general guidelines for fluid replacement and acclimatisation to hot conditions and altitude.

The final section of the paper examines the issue of haematological manipulation for the purposes of ergogenic improvement. Although experiments with blood doping revealed improvements in running time to exhaustion and maximal oxygen uptake, the introduction of recombinant erythropoietin has rendered blood doping little more than a historical footnote. However, the improvements in performance are not without risk, and the use of exogenous erythropoietin has the potential for increased viscosity of the blood and thrombosis with potentially fatal results. Until a definitive test is developed for detection of exogenous erythropoietin, it will continue to be a part of elite athletics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I.
Table II.

Similar content being viewed by others

References

  1. Eichner ER. The anemias of athletes. Physician Sports Med 1986; 14 (9): 122–30

    Google Scholar 

  2. Hallberg L, Magnusson B. The etiology of ‘sports anemia’. Acta Med Scand 1984; 216: 145–8

    Article  Google Scholar 

  3. Balaban EP. Sports anemia. Clin SportsMed 1992; 11 (2): 313–25

    CAS  Google Scholar 

  4. Weight LM. ‘Sports anemia’: does it exist? Sports Med 1993; 16 (1): 1–4

    Article  PubMed  CAS  Google Scholar 

  5. Wells CL, Stern JR, Hecht LH. Hematological changes following a marathon race in male and female runners. Eur J Appl Physiol 1982; 48: 41–9

    Article  CAS  Google Scholar 

  6. Dill DB, Braithwaite K, Adams WC, et al. Blood volume of middle-distance runners: effect of 2,300-m altitude and comparison with non-athletes. Med Sci Sports 1974; 6: 1–7

    PubMed  CAS  Google Scholar 

  7. Weight LM, Darge BL, Jacobs P. Athletes’ pseudoanemia. Eur J Appl Physiol 1991; 62: 358–62

    Article  CAS  Google Scholar 

  8. de Wijn JF, de Jongste JL, Mosterd W, et al. Haemoglobin, packed cell volume, serum iron and iron binding capacity of selected athletes during training. J Sports Med 1971; 11: 42–51

    Google Scholar 

  9. Brotherhood J, Brozovic B, Pugh LGC. Haematological status of middle- and long-distance runners. Clin Sci 1975; 48: 139–45

    CAS  Google Scholar 

  10. Telford RD, Cunningham RB. Sex, sport, and body-size dependency of hematology in highly trained athletes. Med Sci Sports Exerc 1991; 23: 788–94

    PubMed  CAS  Google Scholar 

  11. Clement DB, Asmundson RC, Medhurst CW. Hemoglobin values: comparative survey of the 1976 Canadian Olympic team. Can Med Assoc J 1977; 117: 614–6

    PubMed  CAS  Google Scholar 

  12. Weight LM, Klein M, Noakes TD, et al. ‘Sports anemia’: a real or apparent phenomenon in endurance-trained athletes? Int J Sports Med 1992; 13: 344–7

    Article  PubMed  CAS  Google Scholar 

  13. Risser WL, Lee EJ, Poindexter HBW, et al. Iron deficiency in female athletes: its prevalence and impact on performance. Med Sci Sports Exerc 1988; 20: 116–21

    Article  PubMed  CAS  Google Scholar 

  14. Balaban EP, Cox JV, Snell P, et al. The frequency of anemia and iron deficiency in the runner. Med Sci Sports Exerc 1989; 21: 643–8

    PubMed  CAS  Google Scholar 

  15. Stewart GA, Steel JE, Toyne AH, et al. Observations on the haematology and the iron and protein intake of Australian Olympic athletes. Med J Aust 1972; 2: 1339–43

    PubMed  CAS  Google Scholar 

  16. Pate R. Sports anemia: a review of the current research literature. Physician Sports Med 1983; 11: 115

    Google Scholar 

  17. Dotan R, Rotstein A, Dlin R, et al. Relationships of marathon running to physiological, anthropometric and training indices. Eur J Appl Physiol 1983; 51: 281–93

    Article  Google Scholar 

  18. Eichner ER. Blood doping: results and consequences from the laboratory and the field. Physician Sports Med 1987; 15 (1): 121–9

    Google Scholar 

  19. Fleischer R. Ueber eine neue form von haemoglobinurie beim menschen. Berl Klin Wochenschr 1881; 18: 691

    Google Scholar 

  20. O’Toole ML, Hiller WDB, Roalstad MS, et al. Hemolysis during triathlon races: its relation to race distance. Med Sci Sports Exerc 1988; 20: 272–5

    Article  PubMed  Google Scholar 

  21. Dufaux B, Hoederath A, Streitberger I, et al. Serum ferritin, transferrin, haptoglobin, and iron in middle- and long-distance runners, elite rowers, and professional racing cyclists. Int J Sports Med 1981; 2: 43–6

    Article  PubMed  CAS  Google Scholar 

  22. Selby GB, Eichner ER. Endurance swimming, intravascular hemolysis, anemia, and iron depletion. Am J Med 1986; 81: 791–4

    Article  PubMed  CAS  Google Scholar 

  23. Schwellnus MP, Penfold GK, Cilliers JF, et al. Intravascular hemolysis in aerobic dancing: the role of floor surface and type of routine. Physician Sports Med 1989; 17 (8): 55–67

    Google Scholar 

  24. Wolf PL, Lott JA, Nitti GJ, et al. Changes in serum enzymes, lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem 1987; 20: 73–7

    Article  PubMed  CAS  Google Scholar 

  25. Falsetti HL, Burke ER, Feld RD, et al. Hematological variations after endurance running with hard- and soft-soled running shoes. Physician Sports Med 1983; 11 (8): 118–24

    Google Scholar 

  26. Davidson RJL. Exertional haemoglobinuria: a report on three cases with studies on the haemolytic mechanism. J Clin Pathol 1964; 17: 536–40

    Article  PubMed  CAS  Google Scholar 

  27. Smith JA. Exercise, training and red blood cell turnover. Sports Med 1995; 19: 9–31

    Article  Google Scholar 

  28. Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sports Med 1990; 10: 181–97

    Article  PubMed  CAS  Google Scholar 

  29. Selby GB, Frame DC, Eichner LK, et al. Athlete’s echinocytes: new cause of exertional hemolysis [abstract]? Blood 1987; 70: 56A

    Google Scholar 

  30. Sanborn CF, Jankowski CM. Physiologic considerations for women in sport. Clin Sports Med 1994; 13: 315–27

    PubMed  CAS  Google Scholar 

  31. Clement DB, Sawchuk LL. Iron status and sports performance. Sports Med 1984; 1: 65–74

    Article  Google Scholar 

  32. Harris SS. Helping active women avoid anemia. Physician Sports Med 1995; 23 (5): 35–47

    Google Scholar 

  33. Selby GB. When does an athlete need iron? Physician Sports Med 1991; 19 (4): 96–102

    Google Scholar 

  34. Addy DP. Happiness is: iron. BMJ 1986; 292: 969–70

    Article  PubMed  CAS  Google Scholar 

  35. Cook JD, Finch CA, Smith NJ. Evaluation of the iron status of a population. Blood 1976; 48: 449–55

    PubMed  CAS  Google Scholar 

  36. Cook JD, Skikne BS, Lynch SR, et al. Estimates of iron sufficiency in the US population. Blood 1986; 68: 726–31

    PubMed  CAS  Google Scholar 

  37. Clement DB, Asmundson RC. Nutritional intake and hematological parameters in endurance runners. Physician Sports Med 1982; 10 (3): 37–43

    Google Scholar 

  38. Rowland TW, Black SA, Kelleher JF. Iron deficiency in adolescent endurance athletes. J Adolesc Health Care 1987; 8: 322–6

    Article  PubMed  CAS  Google Scholar 

  39. Nickerson HJ, Holubets MC, Weiler BR, et al. Causes of iron deficiency in adolescent athletes. J Pediatr 1989; 114: 657–63

    Article  PubMed  CAS  Google Scholar 

  40. Nickerson HJ, Holubets M, Tripp AD, et al. Decreased iron stores in high school female runners. Am J Dis Child 1985; 139: 1115–9

    PubMed  CAS  Google Scholar 

  41. Rowland TW, Kelleher JF. Iron deficiency in athletes: insights from high school swimmers. Am J Dis Child 1989; 143: 197–200

    PubMed  CAS  Google Scholar 

  42. Rowland TW, Stagg L, Kelleher JF. Iron deficiency in adolescent girls: are athletes at increased risk? J Adolesc Health 1991; 12: 22–5

    Article  PubMed  CAS  Google Scholar 

  43. Lampe JW, Slavin JL, Apple FS. Iron status of active women and the effect of running a marathon on bowel function and gastrointestinal blood loss. Int J Sports Med 1991; 12: 173–9

    Article  PubMed  CAS  Google Scholar 

  44. Weight LM, Jacobs P, Noakes TD. Dietary iron deficiency and sports anemia. Br J Nutr 1992; 68: 253–60

    Article  PubMed  CAS  Google Scholar 

  45. Magnusson B, Hallberg L, Rossander, et al. Iron metabolism and ‘sports anemia’: II. A hematological comparison of elite runners and control subjects. Acta Med Scand 1984: 216: 157–64

    Article  PubMed  CAS  Google Scholar 

  46. Wishnitner R, Vorst E, Berrebi A. Bone marrow iron depression in competitive distance runners. Int J Sports Med 1983; 4: 27–30

    Article  Google Scholar 

  47. Haymes EM, Spillman DM. Iron status of women distance runners, sprinters, and control women. Int J Sports Med 1989; 10: 430–3

    Article  PubMed  CAS  Google Scholar 

  48. Moses FM. Gastrointestinal bleeding and the athlete. Am J Gastroenterol 1993; 88: 1156–9

    Google Scholar 

  49. Baska RS, Moses FM, Graeber G, et al. Gastrointestinal bleeding during an ultramarathon. Dig Dis Sci 1990; 35: 276–9

    Article  PubMed  CAS  Google Scholar 

  50. Cianflocco AJ. Renal complications of exercise. Clin Sports Med 1992; 11: 437–51

    PubMed  CAS  Google Scholar 

  51. Weight LM, Byrne MJ, Jacobs P. Haemolytic effects of exercise. Clin Sci 1991; 81: 147–52

    PubMed  CAS  Google Scholar 

  52. Nattiv A, Puffer J. Lifestyles and health risks of collegiate athletes. J Fam Pract 1991; 33: 585–90

    PubMed  CAS  Google Scholar 

  53. Brune M, Magnusson B, Persson H, et al. Iron losses in sweat. Am J Clin Nutr 1986; 43: 438–43

    PubMed  CAS  Google Scholar 

  54. Rowland TW. Iron deficiency in the young athlete. Pediatr Clin North Am 1990; 37: 1153–63

    PubMed  CAS  Google Scholar 

  55. Finch CA, Miller LR, Inamdar AR, et al. Iron deficiency in the rat. J Clin Invest 1976; 58: 447–53

    Article  PubMed  CAS  Google Scholar 

  56. Newhouse IJ, Clement DB, Taunton JE, et al. The effects of prelatent/latent iron deficiency on physical work capacity. Med Sci Sports Exerc 1989; 21: 263–8

    PubMed  CAS  Google Scholar 

  57. Celsing F, Blomstrand E, Werner B, et al. Effects of iron deficiency on endurance and muscle enzyme activity in man. Med Sci Sports Exerc 1986; 18: 156–61

    PubMed  CAS  Google Scholar 

  58. Matter M, Stittfall T, Graves J, et al. The effect of iron and folate therapy on maximal exercise performance in female marathon runners with iron and folate deficiency. Clin Sci 1987; 72: 415–22

    PubMed  CAS  Google Scholar 

  59. Raunikar RA, Sabio H. Anemia in the adolescent athlete. Am J Dis Child 1992; 146: 1201–5

    PubMed  CAS  Google Scholar 

  60. Jones SR, Binder RA, Donowho EM. Sudden death in sickle cell trait. N Engl J Med 1970; 282: 323–5

    Article  PubMed  CAS  Google Scholar 

  61. Phillips M, Robinowitz M, Higgins JR, et al. Sudden cardiac death in air force recruits. JAMA 1986; 256: 2696–9

    Article  PubMed  CAS  Google Scholar 

  62. Hoiberg A, Ernst J, Uddin DE. Sickle cell trait and glucose-6- phosphate dehydrogenase deficiency. Arch Intern Med 1981; 141: 1485–8

    Article  PubMed  CAS  Google Scholar 

  63. Kark JA, Posey DM, Schumacher HR, et al. Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med 1987; 317: 781–7

    Article  PubMed  CAS  Google Scholar 

  64. Eichner ER. Sickle cell trait, heroic exercise, and fatal collapse. Physician Sports Med 1993; 21 (7): 51–64

    Google Scholar 

  65. Browne RJ, Gillespie CA. Sickle cell trait: a risk factor for life-threatening rhabdomyolysis? Physician Sports Med 1993; 21 (6): 80–8

    Google Scholar 

  66. Eichner ER. Sickle cell trait, exercise, and altitude. Physician Sports Med 1986; 14 (11): 144–57

    Google Scholar 

  67. Heller P, Best WR, Nelson RB, et al. Clinical implications of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency in hospitalized black male patients. N Engl J Med 1979; 300: 1001–5

    Article  PubMed  CAS  Google Scholar 

  68. Kark JA, Ward FT. Exercise and hemoglobin S. Sem Hematol 1994; 31: 181–225

    CAS  Google Scholar 

  69. Le Gallais D, Prefaut C, Dulat C, et al. Sickle cell trait in ivory coast athletic champions, 1956–1989. Int J Sports Med 1991; 12: 509–10

    Article  PubMed  Google Scholar 

  70. Murphy JR. Sickle cell hemoglobin (Hb AS) in black football players. JAMA 1973; 225: 981–2

    Article  PubMed  CAS  Google Scholar 

  71. Le Gallais D, Prefaut C, Mercier J, et al. Sickle cell trait as a limiting factor for high-level performance in a semi-marathon. Int J Sports Med 1994; 15: 399–402

    Article  PubMed  Google Scholar 

  72. Pace N. The increase in hypoxia tolerance of normal men accompanying the polycythemia induced by transfusion of erythrocytes. Am J Physiol 1947; 148: 152–63

    PubMed  CAS  Google Scholar 

  73. Ekblom B, Goldbarg AN, Gullbring B. Response to exercise after blood loss and reinfusion. J Appl Physiol 1972; 33: 175–80

    PubMed  CAS  Google Scholar 

  74. Williams MH, Wesseldine S, Somma T, et al. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sports Exerc 1981; 13: 169–75

    PubMed  CAS  Google Scholar 

  75. Buick FJ, Gledhill N, Froese AB, et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48: 636–42

    PubMed  CAS  Google Scholar 

  76. Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA 1987; 257: 2761–5

    Article  PubMed  CAS  Google Scholar 

  77. Ekblom B, Berglund B. Effect of erythropoietin administration on maximal aerobic power. Scand J Med Sci Sports 1991; 1: 88–93

    Article  Google Scholar 

  78. Eichner ER. Better dead than second. J Lab Clin Med 1992; 120: 359–60

    Google Scholar 

  79. Wide L, Bengtsson C, Berglund B, et al. Detection in blood and urine of recombinant erythropoietin administered to healthy men. Med Sci Sports Exerc 1995; 27: 1569–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaskey, D.J., Green, G.A. Sports Haematology. Sports Med 29, 27–38 (2000). https://doi.org/10.2165/00007256-200029010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200029010-00003

Keywords

Navigation