Skip to main content
Log in

The Thermophysiology of Uncompensable Heat Stress

Physiological Manipulations and Individual Characteristics

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In many athletic and occupational settings, the wearing of protective clothing in warm or hot environments creates conditions of uncompensable heat stress where the body is unable to maintain a thermal steady state. Therefore, special precautions must be taken to minimise the threat of thermal injury. Assuming that manipulations known to reduce thermoregulatory strain during compensable heat stress would be equally effective in an uncompensable heat stress environment is not valid. In this review, we discuss the impact of hydration status, aerobic fitness, endurance training, heat acclimation, gender, menstrual cycle, oral contraceptive use, body composition and circadian rhythm on heat tolerance while wearing protective clothing in hot environments. The most effective countermeasure is ensuring that the individual is adequately hydrated both before and throughout the exercise or work session. In contrast, neither short term aerobic training or heat acclimation significantly improve exercise-heat tolerance during uncompensable heat stress. While short term aerobic training is relatively ineffective, long term improvements in physical fitness appear to provide some degree of protection. Individuals with higher proportions of body fat have a lower heat tolerance because of a reduced capacity to store heat. Women not using oral contraceptives are at a thermoregulatory disadvantage during the luteal phase of the menstrual cycle. The use of oral contraceptives eliminates any differences in heat tolerance throughout the menstrual cycle but tolerance is reduced during the quasi-follicular phase compared with non-users. Diurnal variations in resting core temperature do not appear to influence tolerance to uncompensable heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Table I.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Bligh J. Regulation of body temperature in man and other mammals. In: Shitzer A, Eberhart RC, editors. Heat transfer in medicine and biology. New York (NY): Plenum Publishing, 1985: 15–51

    Google Scholar 

  2. Gonzalez RR. Biophysics of heat transfer and clothing considerations. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine in terrestrial extremes. Indianapolis (IA): Benchmark Press, 1988: 45–95

    Google Scholar 

  3. Gardner JW, Kark JA, Karnei K, et al. Risk factors predicting exertional heat illness in male Marine Corps recruits. Med Sci Sports Exerc 1996; 28: 939–44

    PubMed  CAS  Google Scholar 

  4. Hancock PA. Task categorization and the limits of human performance in extreme heat. Aviat Space Environ Med 1982; 53: 778–84

    PubMed  CAS  Google Scholar 

  5. Enander AE, Hygge S. Thermal stress and human performance. Scand J Work Environ Health 1990; 16 Suppl. 1: 44–50

    PubMed  Google Scholar 

  6. Nunneley SA. Design and evaluation of clothing for protection from heat stress: an overview. In: Mekjavic IB, Banister EW, Morrison JB, editors. Environmental ergonomics: sustaining human performance in harsh environments. Philadelphia (PA): Taylor & Francis, 1988: 87–98

    Google Scholar 

  7. Givoni B, Goldman RF. Predicting rectal temperature response to work, environment, and clothing. J Appl Physiol 1972; 32: 812–22

    PubMed  CAS  Google Scholar 

  8. Haslam RA, Parsons KC. A comparison of models for predicting human response to hot and cold environments. Ergonomics 1987; 30: 1599–614

    PubMed  CAS  Google Scholar 

  9. Helmer I. Protective clothing and heat stress. Ergonomics 1995; 38: 166–82

    Google Scholar 

  10. McLellan TM, Frim J. Heat strain with the Canadian Forces chemical defence clothing: problems and possible solutions. Aviat Space Environ Med 1994; 19: 379–99

    CAS  Google Scholar 

  11. Nunneley SA. Heat stress in protective clothing: interactions among physical and physiological factors. Scand J Work Environ Health 1989; 15 Suppl. 1: 52–7

    PubMed  Google Scholar 

  12. Parsons KC. Protective clothing: heat exchange and physiological objectives. Ergonomics 1988; 31: 991–1007

    PubMed  CAS  Google Scholar 

  13. Shitzer A, Chato JC. Thermal interaction with garments. In: Shitzer A, Eberhart RC, editors. Heat transfer in medicine and biology. New York (NY): Plenum Press, 1985: 375–94

    Google Scholar 

  14. Shitzer A, Eberhart RC. Heat generation, storage, and transport processes. In: Shitzer A, Eberhart RC, editors. Heat transfer in medicine and biology. New York (NY): Plenum Press, 1985: 137–52

    Google Scholar 

  15. Aoyagi Y, McLellan TM, Shephard RJ. Interactions of physical training and heat acclimation: the thermophysiology of exercising in a hot climate. Sports Med 1997; 23: 173–210

    PubMed  CAS  Google Scholar 

  16. Sawka MN, Wenger CB. Physiological responses to acute exercise-heat stress. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine in terrestrial extremes. Indianapolis (IA): Benchmark Press, 1988: 97–151

    Google Scholar 

  17. Taylor NAS. Eccrine sweat glands: adaptations to physical training and heat acclimation. Sports Med 1986; 3: 387–97

    PubMed  CAS  Google Scholar 

  18. Craig FN, Moffitt JT. Efficiency of evaporative cooling from wet clothing. J Appl Physiol 1974; 36: 313–6

    PubMed  CAS  Google Scholar 

  19. Kenney WL, Lewis DA, Hyde DE, et al. Physiologically derived critical evaporative coefficients for protective clothing ensembles. J Appl Physiol 1987; 63: 1095–9

    PubMed  CAS  Google Scholar 

  20. Kakitsuba N, Gaul K, Michna H, et al. Dynamic moisture permeation through clothing. Aviat Space Environ Med 1988; 59: 49–53

    PubMed  CAS  Google Scholar 

  21. McLellan TM, Pope JI, Cain JB, et al. Effects of metabolic rate and ambient vapour pressure on heat strain in protective clothing. Eur J Appl Physiol 1996; 74: 518–27

    CAS  Google Scholar 

  22. Kerslake DM. The stress of hot environments. London: Cambridge University Press, 1972

    Google Scholar 

  23. Candas V, Libert JP, Vogt JJ. Human skin wettedness and evaporative efficiency of sweating. J Appl Physiol 1979; 46: 522–8

    PubMed  CAS  Google Scholar 

  24. Alber-Wallerstrom B, Holmer I. Efficiency of sweat evaporation in unacclimatized man working in a hot humid environment. Eur J Appl Physiol 1985; 54: 480–7

    CAS  Google Scholar 

  25. Fanger PO. Thermal comfort: analysis and applications in environmental engineering. Copenhagen: Danish Technical Press, 1970

    Google Scholar 

  26. Nishi, Y. Measurement of thermal balance of man. In: Cena K, Clark JA, editors. Bioengineering, thermal physiology and comfort. New York (NY): Elsevier Scientific Publishing Co., 1981: 29–39

    Google Scholar 

  27. Gonzalez RR, McLellan TM, Withey WR, et al. Heat strain models applicable for protective clothing systems: comparison of core temperature response. J Appl Physiol 1997; 83: 1017–32

    PubMed  CAS  Google Scholar 

  28. Bomalaski SH, Chen YT, Constable SH. Continuous and intermittent personal microclimate cooling strategies. Aviat Space Environ Med 1995; 66: 745–50

    PubMed  CAS  Google Scholar 

  29. Constable SH, Bishop PA, Nunnelely SA, et al. Intermittent microclimate cooling during rest increases work capacity and reduces heat stress. Ergonomics 1994; 37: 277–85

    PubMed  CAS  Google Scholar 

  30. Latzka WA, Sawka MN, Montain SJ, et al. Hyperhydration: tolerance and cardiovascular effects during uncompensable exercise-heat stress. J Appl Physiol 1998; 84: 1858–64

    PubMed  CAS  Google Scholar 

  31. Shapiro Y, Pandolf KB, Sawka MN, et al. Auxiliary cooling: comparison of air-cooled vs. water-cooled vests in hot-dry and hot-wet environments. Aviat Space Environ Med 1982; 53: 785–9

    PubMed  CAS  Google Scholar 

  32. Montain SJ, Sawka MN, Cadarette BS, et al. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol 1994; 77: 216–22

    PubMed  CAS  Google Scholar 

  33. Sawka MN, Young AJ, Latzka WA, et al. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol 1992; 73: 368–75

    PubMed  CAS  Google Scholar 

  34. Webb P. The physiology of heat regulation. Am J Physiol 1995; 268: R838–50

    Google Scholar 

  35. Rasch W, Samson P, Cote J, et al. Heat loss from the human head during exercise. J Appl Physiol 1991; 71: 590–5

    PubMed  CAS  Google Scholar 

  36. Gonzalez RR, Levell CA, Stroschein LA, et al. Copper manikin and heat strain model evaluations of chemical protective ensembles for the technical cooperation program (TTCP). Technical report T94–4. Natick (MA): US Army Research Institute of Environmental Medicine, 1993

    Google Scholar 

  37. Smolander J, Louhevaara V, Tuomi T, et al. Cardiorespiratory and thermal effects of wearing gas protective clothing. Int Arch Occup Environ Health 1984; 54: 261–70

    PubMed  CAS  Google Scholar 

  38. Duggan A. Energy cost of stepping in protective clothing ensembles. Ergonomics 1988; 31: 3–11

    PubMed  CAS  Google Scholar 

  39. Patton JF, Bidwell TE, Murphy MM, et al. Energy cost of wearing chemical protective clothing during progressive treadmill walking. Aviat Space Environ Med 1995; 66: 238–42

    PubMed  CAS  Google Scholar 

  40. Aoyagi Y, McLellan TM, Shephard RJ. Effects of training and acclimation on heat tolerance in exercising men wearing protective clothing. Eur J Appl Physiol 1994; 68: 234–45

    CAS  Google Scholar 

  41. Matthews DK, Fox EL, Tanzi J. Physiological responses during exercise and recovery in a football uniform. J Appl Physiol 1969; 26: 611–5

    Google Scholar 

  42. Teitlebaum A, Goldman RF. Increased energy cost with multiple clothing layers. J Appl Physiol 1972; 32: 743–4

    PubMed  CAS  Google Scholar 

  43. Sullivan PJ, Mekjavic IB, Kakitsuba N. Determination of clothing microenvironment volume. Ergonomics 1987; 30: 1043–52

    PubMed  CAS  Google Scholar 

  44. Sullivan PJ, Mekjavic IB. Temperature and humidity within the clothing microenvironment. Aviat Space Environ Med 1992; 63: 186–92

    PubMed  CAS  Google Scholar 

  45. Wenger CB. Heat evaporation of sweat: thermodynamic considerations. J Appl Physiol 1972; 32: 456–9

    PubMed  CAS  Google Scholar 

  46. Nadel ER. Control of sweating rate while exercising in the heat. Med Sci Sports Exerc 1979; 11: 31–5

    CAS  Google Scholar 

  47. McLellan TM. Work performance at 40°C with Canadian Forces biological and chemical protective clothing. Aviat Space Environ Med 1993; 64: 1094–100

    PubMed  CAS  Google Scholar 

  48. Candas V, Hoeft A. Clothing, assessment and effects on thermophysiological responses of man working in humid heat. Ergonomics 1995; 38: 115–27

    PubMed  CAS  Google Scholar 

  49. Duncan HW, Gardner GW, Barnard RJ. Physiological responses of men working in fire fighting equipment in the heat. Ergonomics 1979; 22: 521–7

    PubMed  CAS  Google Scholar 

  50. Faff J, Tutak T. Physiological responses to working with fire fighting equipment in the heat in relation to subjective fatigue. Ergonomics 1989; 32: 629–38

    PubMed  CAS  Google Scholar 

  51. White MK, Vercruyssen M, Hodous TK. Work tolerance and subjective responses to wearing protective clothing and respirators during physical work. Ergonomics 1989; 32: 1111–23

    PubMed  CAS  Google Scholar 

  52. White MK, Hodous TK, Vercruyssen M. Effects of thermal environment and chemical protective clothing on work tolerance, physiological responses, and subjective ratings. Ergonomics 1991; 34: 445–57

    PubMed  CAS  Google Scholar 

  53. McLellan TM, Jacobs I, Bain JB. Influence of temperature and metabolic rate on work performance with Canadian Forces NBC clothing. Aviat Space Environ Med 1993; 64: 587–94

    PubMed  CAS  Google Scholar 

  54. Amos D, Hansen R. The physiological strain induced by a new low burden chemical protective ensemble. Aviat Space Environ Med 1997; 68: 126–31

    PubMed  CAS  Google Scholar 

  55. McLellan TM, Meunier P, Livingstone S. Influence of a new vapor protective clothing layer on physical work tolerance times at 40°C. Aviat Space Environ Med 1992; 63: 107–13

    PubMed  CAS  Google Scholar 

  56. McLellan TM. Heat strain while wearing the current Canadian or a new hot-weather French NBC protective clothing ensemble. Aviat Space Environ Med 1996; 67: 1057–62

    PubMed  CAS  Google Scholar 

  57. Kraning II KK, Gonzalez RR. Physiological consequences of intermittent exercise during compensable and uncompensable heat stress. J Appl Physiol 1991; 71: 2138–45

    PubMed  Google Scholar 

  58. Craig FN, Garren HW, Frankel H, et al. Heat load and voluntary tolerance time. J Appl Physiol 1954; 6: 633–44

    Google Scholar 

  59. Shvartz E, Benor D. Heat strain in hot and humid environments. Aerosp Med 1972; 43: 852–5

    PubMed  CAS  Google Scholar 

  60. Amos D, Gray B, Hansen R. A physiological evaluation of the chemical, biological combat suit under warm, humid and hot, dry climatic conditions. Defence Science and Technology Organisation technical report no. 0570. Melbourne: Aeronautical and Maritime Research Laboratory, 1997

    Google Scholar 

  61. Antuñano MJ, Nunneley SA. Heat stress in protective clothing: validation of a computer model and the heat-humidity index (HHI). Aviat Space Environ Med 1992; 63: 1087–92

    PubMed  Google Scholar 

  62. Henane R, Bittel J, Viret R, et al. Thermal strain resulting from protective clothing of an armored vehicle crew in warm conditions. Aviat Space Environ Med 1979; 50: 599–603

    PubMed  CAS  Google Scholar 

  63. Cain JB, McLellan TM. A model of evaporation from the skin while wearing protective clothing. Int J Biometerol 1998; 41: 183–93

    CAS  Google Scholar 

  64. Frisancho AR. Human adaptation: a functional interpretation. Ann Arbor (MI): University of Michigan Press, 1981

    Google Scholar 

  65. Curley MD, Hawkins RN. Cognitive performance during a heat acclimatization regimen. Aviat Space Environ Med 1983; 54: 709–13

    PubMed  CAS  Google Scholar 

  66. Wenger CB. Human heat acclimatization. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine in terrestrial extremes. Indianapolis (IA): Benchmark Press, 1988: 153–97

    Google Scholar 

  67. Armstrong LE, Pandolf KB. Physical training, cardiorespiratory physical fitness and exercise-heat tolerance. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine in terrestrial extremes. Indianapolis (IA): Benchmark Press, 1988: 199–226

    Google Scholar 

  68. Wyndham CH. The physiology of exercise under heat stress. Ann Rev Physiol 1973; 35: 193–220

    CAS  Google Scholar 

  69. Nadel ER, Pandolf KB, Roberts MF, et al. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol 1974; 37: 515–20

    PubMed  CAS  Google Scholar 

  70. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 1974; 54: 75–159

    PubMed  CAS  Google Scholar 

  71. Shvartz E, Magazanik A, Glick Z. Thermal responses during training in a temperate climate. J Appl Physiol 1974; 36: 572–6

    PubMed  CAS  Google Scholar 

  72. Windle CM, Davies NJ. The effect of fitness on performance in a hot environment wearing normal clothing and when wearing protective clothing. 7th International Conference on Environmental Ergonomics; 1996 Oct 27–Nov 1; Jerusalem. Tel Aviv: Freund Publishing House Ltd, 1996: 209–12

    Google Scholar 

  73. Adolph EF. Physiology of man in the desert. New York (NY): Interscience, 1947

    Google Scholar 

  74. Sawka MN. Body fluid responses and hypohydration during exercise-heat stress. In: Pandolf KB, Sawka MN, Gonzalez ER, editors. Human performance physiology and environmental medicine in terrestrial extremes. Indianapolis (IA): Benchmark Press, 1988: 227–66

    Google Scholar 

  75. Sawka MN. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 1992; 24: 657–70

    PubMed  CAS  Google Scholar 

  76. Armstrong LE, Hubbard RW, Jones BH, et al. Preparing Alberto Salazar for the heat of the 1984 Olympic marathon. Phys Sportsmed 1986; 14: 73–81

    Google Scholar 

  77. Armstrong LE, Hubbard RW, Szlyk PC, et al. Voluntary dehydration and electrolyte losses during prolonged exercise in the heat. Aviat Space Environ Med 1985; 56: 765–70

    PubMed  CAS  Google Scholar 

  78. Broad EM, Burke LM, Cox GR, et al. Body weight changes and voluntary fluid intakes during training and competition sessions in team sports. Int J Sport Nutr 1996; 6: 307–20

    PubMed  CAS  Google Scholar 

  79. Decastro JM. Age-related changes in natural spontaneous fluid ingestion and thirst in humans. J Gerontol 1992; 47: P321–30

    Google Scholar 

  80. Engell DB, Maller O, Sawka MN, et al. Thirst and fluid intake following graded hypohydration levels in humans. Physiol Behav 1987; 40: 229–36

    PubMed  CAS  Google Scholar 

  81. Gore CJ, Bourdon PC, Woolford SM, et al. Involuntary dehydration during cricket. Int J Sports Med 1993; 14: 387–95

    PubMed  CAS  Google Scholar 

  82. Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med Sci Sports Exerc 1992; 24: 645–56

    PubMed  CAS  Google Scholar 

  83. Hubbard RW, Sandick BL, Matthew WT, et al. Voluntary dehydration and alliesthesia for water. J Appl Physiol 1984; 57: 858–75

    Google Scholar 

  84. Fortney SM, Vroman NB, Beckett WS, et al. Effect of exercise hemoconcentration and hyperosmolality on exercise responses. J Appl Physiol 1988; 65: 519–24

    PubMed  CAS  Google Scholar 

  85. Johnson JM, Park MK. Reflex control of skin blood flow by skin temperature: role of core temperature. J Appl Physiol 1979; 47: 1188–93

    PubMed  CAS  Google Scholar 

  86. Johnson JM. Central and peripheral adjustments to long-term exercise in humans. Can J Sport Sci 1987; 12 Suppl. 1: 84–8S

    Google Scholar 

  87. Nadel ER, Fortney SM, Wenger CB. Effect of hydration state on circulatory and thermal regulations. J Appl Physiol 1980; 49: 715–21

    PubMed  CAS  Google Scholar 

  88. Tankersley CG, Zappe DH, Meister TG, et al. Hypohydration affects forearm vascular conductance independent of heart rate during exercise. J Appl Physiol 1992; 73: 1232–7

    PubMed  CAS  Google Scholar 

  89. Fortney SM, Wenger CB, Bove JR, et al. Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol 1984; 57: 1688–95

    PubMed  CAS  Google Scholar 

  90. Fortney SM, Nadel ER, Wenger CB, et al. Effect of blood volume on sweating rate and body fluids in exercising humans. J Appl Physiol 1981; 51: 1594–600

    PubMed  CAS  Google Scholar 

  91. Noakes TD. Fluid replacement during exercise. Exerc Sport Sci Rev 1993; 21: 297–330

    PubMed  CAS  Google Scholar 

  92. Candas V, Libert J-P, Brandenberger G, et al. Thermal and circulatory responses during prolonged exercise at different levels of hydration. J Physiol (Paris) 1988; 83: 11–8

    CAS  Google Scholar 

  93. Candas V, Libert JP, Brandenberger G, et al. Hydration during exercise: effects on thermal and cardiovascular adjustments. Eur J Appl Physiol 1986; 55: 113–22

    CAS  Google Scholar 

  94. Ekblom B, Greenleaf CJ, Greenleaf JE, et al. Temperature regulation during exercise dehydration in man. Acta Physiol Scand 1970; 79: 475–83

    PubMed  CAS  Google Scholar 

  95. Sawka MN, Young AJ, Francesconi RP, et al. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol 1985; 59: 1394–401

    PubMed  CAS  Google Scholar 

  96. Montain SJ, Latzka WA, Sawka MN. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J Appl Physiol 1995; 79: 1434–9

    PubMed  CAS  Google Scholar 

  97. Strydom NB, Holdsworth LD. The effects at different levels of water deficit on physiological responses during heat stress. Int Z Angew Physiol 1968; 26: 95–102

    PubMed  CAS  Google Scholar 

  98. Sawka MN, Toner MM, Francesconi RP, et al. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J Appl Physiol 1983; 55: 1147–53

    PubMed  CAS  Google Scholar 

  99. Cheung SS, McLellan TM. Influence of hydration status and fluid replacement on tolerance during uncompensable heat stress. Eur J Appl Physiol 1998; 77: 139–48

    CAS  Google Scholar 

  100. Cheung SS, McLellan TM. Influence of heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol 1998; 84: 1731–9

    PubMed  CAS  Google Scholar 

  101. Cheung SS, McLellan TM. Influence of hydration status and short-term aerobic training on tolerance during uncompensable heat stress. Eur J Appl Physiol 1998; 78: 50–8

    CAS  Google Scholar 

  102. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992; 73: 1340–50

    PubMed  CAS  Google Scholar 

  103. Murray R. The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. Sports Med 1987; 4: 322–51

    PubMed  CAS  Google Scholar 

  104. Mitchell JB, Voss KW. The influence of volume on gastric emptying and fluid balance during prolonged exercise. Med Sci Sports Exerc 1991; 23: 314–9

    PubMed  CAS  Google Scholar 

  105. Neufer PD, Young AJ, Sawka MN. Gastric emptying during walking and running: effects of varied exercise intensity. Eur J Appl Physiol 1989; 58: 440–5

    CAS  Google Scholar 

  106. Fordiran JS, Saltin B. Gastric emptying and intestinal absorption during prolonged severe exercise. J Appl Physiol 1967; 23: 331–5

    Google Scholar 

  107. Neufer PD, Young AJ, Sawka MN. Gastric emptying during exercise: effects of heat stress and hypohydration. Eur J Appl Physiol 1989; 58: 433–9

    CAS  Google Scholar 

  108. Rico-Sanz J, Frontera WR, Rivera MA, et al. Effects of hyperhydration on total body water, temperature regulation and performance of elite young soccer players in a warm climate. Int J Sports Med 1996; 17: 85–91

    PubMed  CAS  Google Scholar 

  109. Kristal-Boneh E, Glusman JG, Shitrit R, et al. Physical performance and heat tolerance after chronic water loading and heat acclimation. Aviat Space Environ Med 1995; 66: 733–8

    PubMed  CAS  Google Scholar 

  110. Kristal-Boneh E, Glusman JG, Chaemovitz C, et al. Can chronic, forced water loading replace heat-acclimatization? In: Mercer JB, editor. Thermal physiology 1989. Amsterdam: Elsevier Science Publishers B.V., 1989: 575–80

    Google Scholar 

  111. Freund BJ, Montain SJ, Young AJ, et al. Glycerol hyperhydration: hormonal, renal, and vascular fluid responses. J Appl Physiol 1995; 79: 2069–77

    PubMed  CAS  Google Scholar 

  112. Latzka WA, Sawka MN, Montain SJ, et al. Hyperhydration: thermoregulatory effects during compensable exercise-heat stress. J Appl Physiol 1997; 83: 860–6

    PubMed  CAS  Google Scholar 

  113. Montner P, Stark DM, Riedesel ML, et al. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med 1996; 17: 27–33

    PubMed  CAS  Google Scholar 

  114. Riedesel ML, Allen DY, Peake GT, et al. Hyperhydration with glycerol solutions. J Appl Physiol 1987; 63: 2262–8

    PubMed  CAS  Google Scholar 

  115. Murray R, Eddy DE, Paul GL, et al. Physiological responses to glycerol ingestion during exercise. J Appl Physiol 1991; 71: 144–9

    PubMed  CAS  Google Scholar 

  116. Kark JA, Burr PQ, Wenger CB, et al. Exertional heat illness in Marine Corps recruit training. Aviat Space Environ Med 1996; 67: 354–60

    PubMed  CAS  Google Scholar 

  117. Armstrong LE, Maresh CM. The induction and decay of heat acclimatisation in trained athletes. Sports Med 1991; 12: 302–12

    PubMed  CAS  Google Scholar 

  118. Senay LC, Mitchell D, Wyndham CH. Acclimatization in a hot, humid environment: body fluid adjustments. J Appl Physiol 1976; 40: 786–96

    PubMed  CAS  Google Scholar 

  119. Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatization, decay and reinduction. Ergonomics 1977; 20: 399–408

    PubMed  CAS  Google Scholar 

  120. Garden JW, Wilson ID, Rasch PJ. Acclimatization of healthy young adult males to a hot-wet environment. J Appl Physiol 1966; 21: 665–9

    PubMed  CAS  Google Scholar 

  121. Barnett A, Maughan RJ. Response of unacclimatized males to repeated weekly bouts of exercise in the heat. Br J Sports Med 1993; 27: 39–44

    PubMed  CAS  Google Scholar 

  122. Roberts ME, Wenger CB, Stolwijk JAJ, et al. Skin blood flow and sweating changes following exercise training and heat acclimation. J Appl Physiol 1977; 43: 133–7

    PubMed  CAS  Google Scholar 

  123. Chen WY, Elizondo RS. Peripheral modification of thermoregulatory function during heat acclimation. J Appl Physiol 1974; 37: 367–73

    PubMed  CAS  Google Scholar 

  124. Sato F, Owen M, Matthes R, et al. Functional and morphological changes in the eccrine sweat gland with heat acclimation. J Appl Physiol 1990; 232–6

  125. Dill DB, Hall FG, Edwards HT. Changes in composition of sweat during acclimatization to heat. Am J Physiol 1938; 123: 412–9

    CAS  Google Scholar 

  126. Nose H, Mack GW, Shi X, et al. Shift in body fluid compartments after dehydration in humans. J Appl Physiol 1988; 65: 318–24

    PubMed  CAS  Google Scholar 

  127. Allan JR, Wilson CG. Influence of acclimatization on sweat sodium concentration. J Appl Physiol 1971; 30: 708–12

    PubMed  CAS  Google Scholar 

  128. Aoyagi Y, McLellan TM, Shephard RJ. Effects of 6 versus 12 days of heat acclimation on heat tolerance in lightly exercising men wearing protective clothing. Eur J Appl Physiol 1995; 71: 187–96

    CAS  Google Scholar 

  129. McLellan TM, Aoyagi Y. Heat stain in protective clothing following hot-wet or hot-dry heat acclimation. Can J Appl Physiol 1996; 21: 90–108

    PubMed  CAS  Google Scholar 

  130. Millard CE, Spilsbury PM, Withey WR. The effects of heat acclimation on the heat strain of working in protective clothing. 6th International Conference on Environmental Ergonomics; 1994 Sep 25–30; Montebello, 80–1

  131. Dawson BT. Exercise training in sweat clothing in cool conditions to improve heat tolerance. Sports Med 1994; 17: 233–44

    PubMed  CAS  Google Scholar 

  132. Shvartz E, Benor D. Heat acclimatization to severe dry heat by brief exposures to humid heat. Aerosp Med 1971; 42: 879–81

    PubMed  CAS  Google Scholar 

  133. Shvartz E, Benor D, Saar E. Acclimatization to severe dry heat by brief exposures to humid heat. Ergonomics 1972; 15: 563–71

    PubMed  CAS  Google Scholar 

  134. Shvartz E, Saar E, Meyerstein N, et al. Heat acclimatization while wearing vapor-barrier clothing. Aerosp Med 1973; 44: 609–12

    PubMed  CAS  Google Scholar 

  135. Adolph EF. Life in deserts. In: Adolph EF and Associates, editors. Physiology of man in the desert. New York (NY): Interscience Publishers Inc., 1947: 326–41

    Google Scholar 

  136. Robinson S. Laboratory and field trials: tropics. In: Newburgh LH, editor. Physiology of heat regulation and the science of clothing. Philadelphia (PA): WB Saunders Co., 1949: 338–51

    Google Scholar 

  137. Fox RH, Goldsmith R, Hampton IFG, et al. Heat acclimatization by controlled hyperthermia in hot-dry and hot-wet climates. J Appl Physiol 1967; 22: 39–46

    PubMed  CAS  Google Scholar 

  138. Shvartz E, Saar E, Meyerstein N, et al. A comparison of three methods of acclimatization to dry heat. J Appl Physiol 1973; 34: 214–9

    PubMed  CAS  Google Scholar 

  139. Griefahn B. Acclimation to three different hot climates with equivalent globe temperatures. Ergonomics 1997; 40: 223–34

    PubMed  CAS  Google Scholar 

  140. Candas V, Libert JP, Vogt JJ. Effect of hidromeiosis on sweat drippage during acclimation to humid heat. Eur J Appl Physiol 1980; 44: 123–33

    CAS  Google Scholar 

  141. Candas V, Liebert JP, Vogt JJ. Influence of air velocity and heat acclimation on human skin wettedness and sweating efficiency. J Appl Physiol 1979; 47: 1194–200

    PubMed  CAS  Google Scholar 

  142. Gonzalez RR, Pandolf KB, Gagge AP. Heat acclimation and decline in sweating during humidity transients. J Appl Physiol 1974; 36: 419–25

    PubMed  CAS  Google Scholar 

  143. Goldman RE, Green EB, Iampietro PF. Tolerance of hot, wet environments by resting men. J Appl Physiol 1965; 20: 271–7

    Google Scholar 

  144. Robinson S, Turrell ES, Belding HS, et al. Rapid acclimatization to work in hot climates. Am J Physiol 1943; 140: 168–76

    CAS  Google Scholar 

  145. Bean WB, Eichna LW. Performance in relation to environmental temperature: reactions of normal young men to simulated desert environment. Fed Proc 1943; 2: 144–58

    Google Scholar 

  146. Piwonka RW, Robinson S, Gay VL, et al. Acclimatization of men to heat by training. J Appl Physiol 1965; 20: 379–84

    PubMed  CAS  Google Scholar 

  147. Havenith G, van Middendorp H. The relative influence of physical fitness, acclimation state, anthropometric measures and gender on individual reactions to heat stress. Eur J Appl Physiol 1990; 61: 419–27

    CAS  Google Scholar 

  148. Shvartz E, Shapiro Y, Magazanik A, et al. Heat acclimation, physical fitness, and responses to exercise in temperature and hot environment. J Appl Physiol 1977; 43: 678–83

    PubMed  CAS  Google Scholar 

  149. Cadarette BS, Sawka MN, Toner MM, et al. Aerobic fitness and the hypohydration response to exercise-heat stress. Aviat Space Environ Med 1984; 55: 507–12

    PubMed  CAS  Google Scholar 

  150. Havenith G, Luttikholt VGM, Vrijkotte TGM. The relative influence of body characteristics on humid heat stress response. Eur J Appl Physiol 1995; 70: 270–9

    CAS  Google Scholar 

  151. Henane R, Flandrois R, Charbonnier JP. Increase in sweating sensitivity by endurance conditioning in man. J Appl Physiol 1977; 43: 822–8

    PubMed  CAS  Google Scholar 

  152. Avellini BA, Shapiro Y, Fortney SM, et al. Effects on heat tolerance of physical training in water and on land. J Appl Physiol 1982; 53: 1291–8

    PubMed  CAS  Google Scholar 

  153. Pandolf KB, Cadarette BS, Sawka MN, et al. Thermoregulatory responses of middle-aged men and young men during dry-heat acclimation. J Appl Physiol 1988; 65: 65–71

    PubMed  CAS  Google Scholar 

  154. Smolander J, Ilmarinen R, Korhonen O, et al. Circulatory and thermal responses of men with different training status to prolonged physical work in dry and humid heat. Scand J Work Environ Health 1987; 13: 37–46

    PubMed  CAS  Google Scholar 

  155. Astrand PO, Rhyming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol 1954; 7: 218–20

    PubMed  CAS  Google Scholar 

  156. Saltin B, Hermansen L. Esophageal, rectal, and muscle temperature during exercise. J Appl Physiol 1966; 21: 1757–62

    PubMed  CAS  Google Scholar 

  157. Pandolf KB. Effects of physical training and cardiorespiratory physical fitness on exercise-heat tolerance: recent observations. Med Sci Sports Exerc 1979; 11: 60–5

    CAS  Google Scholar 

  158. Gisolfi CV, Robinson S. Relations between physical training, acclimatization, and heat tolerance. J Appl Physiol 1969; 26: 530–4

    PubMed  CAS  Google Scholar 

  159. Gisolfi CV. Work-heat tolerance derived from interval training. J Appl Physiol 1973; 35: 349–54

    PubMed  CAS  Google Scholar 

  160. Strydom NB, Wyndham CH, Williams CG, et al. Acclimatization to humid heat and the role of physical conditioning. J Appl Physiol 1966; 21: 636–42

    PubMed  CAS  Google Scholar 

  161. Strydom NB, Williams CG. Effect of physical conditioning on state of heat acclimatization of Bantu laborers. J Appl Physiol 1969; 27: 262–5

    PubMed  CAS  Google Scholar 

  162. Green HJ, Coates G, Sutton JR, et al. Early adaptations in gas exchange, cardiac function and haematology to prolonged exercise training in man. Eur J Appl Physiol 1991; 63: 17–23

    CAS  Google Scholar 

  163. Houmard JA, Costill DL, Davis JA, et al. The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc 1990; 22: 615–20

    PubMed  CAS  Google Scholar 

  164. Fox RH, Goldsmith R, Kidd DJ, et al. Blood flow and other thermoregulatory adaptations with acclimation to heat. J Physiol (Lond) 1963; 166: 548–62

    CAS  Google Scholar 

  165. Kondo N, Nishiyasu T, Nishiyasu M, et al. Differences in regional sweating responses during exercise between athletes trained on land and in water. Eur J Appl Physiol 1996; 74: 67–71

    CAS  Google Scholar 

  166. Allan JR. The effects of physical training in a temperate and hot climate on the physiological responses to heat stress. Ergonomics 1965; 8: 445–53

    PubMed  CAS  Google Scholar 

  167. Cheung SS, McLellan TM. Comparison of short-term aerobic training and high maximal aerobic power on tolerance to uncompensable heat stress. Aviat Space Environ Med 1999; 70: 637–43

    PubMed  CAS  Google Scholar 

  168. Graettinger WR. The cardiovascular response to chronic physical exertion and exercise training: an echocardiographic review. Am Heart J 1984; 104: 1014–8

    Google Scholar 

  169. Kjellberg SR, Rudhe U, Sjostrand T. Increase of the amount of hemoglobin and blood volume in connection with physical training. Acta Physiol Scand 1949; 19: 146–51

    Google Scholar 

  170. Dill DB, Braithwaite K, Adams WC, et al. Blood volume of middle-distance runners: effect of 2,300 m altitude and comparison with non-athletes. Med Sci Sports Exerc 1974; 6: 1–7

    CAS  Google Scholar 

  171. Maw GJ, MacKenzie IL, Comer DAM, et al. Whole-body hyperhydration in endurance-trained males determined using radionuclide dilution. Med Sci Sports Exerc 1996; 28: 1038–44

    PubMed  CAS  Google Scholar 

  172. Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 1991; 23: 1338–48

    PubMed  CAS  Google Scholar 

  173. Sawka MN, Young AJ, Pandolf KB, et al. Erythrocyte, plasma, and blood volume of healthy young men. Med Sci Sports Exerc 1992; 24: 447–53

    PubMed  CAS  Google Scholar 

  174. Convertino VA, Greenleaf JE, Bernauer EM. Role of thermal and exercise factors in the mechanism of hypervolemia. J Appl Physiol 1980; 48: 657–64

    PubMed  CAS  Google Scholar 

  175. Green HJ, Thomson JA, Ball ME, et al. Alterations in blood volume following short-term supramaximal exercise. J Appl Physiol 1984; 56: 145–9

    PubMed  CAS  Google Scholar 

  176. Harrison MH. Effects of thermal stress and exercise on blood volume in humans. Physiol Rev 1985; 65: 149–208

    PubMed  CAS  Google Scholar 

  177. Havenith G. Individual parameters in thermoregulatory control: a review. IZF 1985–26. Soesterberg: Institute for Perception, 1985

    Google Scholar 

  178. Kenney WL. A review of comparative responses of men and women to heat stress. Environ Res 1985; 37: 1–11

    PubMed  CAS  Google Scholar 

  179. Shvartz E, Saar E, Benor D. Physique and heat tolerance in hot-dry and hot-humid environments. J Appl Physiol 1973; 34: 799–803

    PubMed  CAS  Google Scholar 

  180. Buskirk ER, Lundegren H, Magnusson L. Heat acclimatization in obese and lean individuals. Ann N Y Acad Sci 1965; 131: 637–53

    PubMed  CAS  Google Scholar 

  181. Buskirk ER, Bar-Or O, Kollias J. Physiological effects of heat and cold. In: Wilson NL, editor. Obesity. Philadelphia (PA): Davis, 1969: 119–39

    Google Scholar 

  182. Dill DB, Soholt LF, McLean DC, et al. Capacity of young males and females for running in desert heat. Med Sci Sports 1977; 9: 137–42

    PubMed  CAS  Google Scholar 

  183. Shapiro Y, Pandolf KB, Avellini BA, et al. Physiological responses of men and women to humid and dry heat. J Appl Physiol 1980; 49: 1–8

    PubMed  CAS  Google Scholar 

  184. Nunneley S. Physiological responses of women to thermal stress: a review. Med Sci Sports 1978; 10: 250–5

    PubMed  CAS  Google Scholar 

  185. McLellan TM. Sex-related differences in thermoregulatory responses while wearing protective clothing. Eur J Appl Physiol 1998; 78: 28–37

    CAS  Google Scholar 

  186. Bittel J, Henane R. Comparison of thermal exchanges in men and women under neutral and hot conditions. J Physiol (Lond) 1975; 250: 475–89

    CAS  Google Scholar 

  187. Fox RH, Lofstedt BE, Woodward PM, et al. Comparison of thermoregulatory functions in men and women. J Appl Physiol 1969; 26: 444–53

    PubMed  CAS  Google Scholar 

  188. Morimoto T, Slabochova Z, Naman RK, et al. Sex differences in physiological reactions to thermal stress. J Appl Physiol 1967; 22; 526–32

    PubMed  CAS  Google Scholar 

  189. Wyndham CH, Morrison JF, Williams CG. Heat reactions of male and female caucasians. J Appl Physiol 1965; 20: 357–64

    PubMed  CAS  Google Scholar 

  190. Avellini BA, Kamen E, Krajewski JT. Physiological responses of physically fit men and women to acclimation to humid heat. J Appl Physiol 1980; 49: 254–61

    PubMed  CAS  Google Scholar 

  191. Frascarolo P, Schutz Y, Jequier E. Decreased thermal conductance during the luteal phase of the menstrual cycle in women. J Appl Physiol 1990; 69: 2029–33

    PubMed  CAS  Google Scholar 

  192. Hessemer V, Bruck K. Influence of menstrual cycle on shivering, skin blood flow, and sweating responses measured at night. J Appl Physiol 1985; 59: 1902–10

    PubMed  CAS  Google Scholar 

  193. Hessemer V, Bruck K. Influence of menstrual cycle on thermoregulatory, metabolic, and heart rate responses to exercise at night. J Appl Physiol 1985; 59: 1911–7

    PubMed  CAS  Google Scholar 

  194. Horvath SM, Drinkwater BL. Thermoregulation and the menstrual cycle. Aviat Space Environ Med 1982; 53: 790–4

    PubMed  CAS  Google Scholar 

  195. Kolka MA, Stephenson LA. Control of sweating during the human menstrual cycle. Eur J Appl Physiol 1989; 58: 890–5

    CAS  Google Scholar 

  196. Kolka MA, Stephenson LA, Gonzalez RR. Thermoregulation in women during uncompensable heat stress. J Therm Biol 1994; 19: 315–20

    Google Scholar 

  197. Kolka MA, Stephenson LA. Interaction of menstrual cycle phase, clothing resistance and exercise on thermoregulation in women. J Therm Biol 1997; 22: 137–41

    Google Scholar 

  198. Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral contraceptive use during compensable and uncompensable heat stress. Eur J Appl Physiol 1999; 80: 76–83

    CAS  Google Scholar 

  199. Gorski J. Exercise during pregnancy: maternal and fetal responses. A brief review. Med Sci Sports Exerc 1985; 17:407–16

    PubMed  CAS  Google Scholar 

  200. Wolfe LA, Ohtake PJ, Mottola ME, et al. Physiological interactions between pregnancy and aerobic exercise. In: Pandolf KB, editor. Exercise and sport science reviews. Baltimore (MD): Williams and Wilkins, 1989; 17: 295–352

    Google Scholar 

  201. Charkoudian N, Johnson JM. Modification of active cutaneous vasodilation by oral contraceptive hormones. J Appl Physiol 1997; 83: 2012–8

    PubMed  CAS  Google Scholar 

  202. Grucza R, Pekkarinen H, Titov E, et al. Influence of the menstrual cycle and oral contraceptives on thermoregulatory responses to exercise in young women. Eur J Appl Physiol 1993; 67: 279–85

    CAS  Google Scholar 

  203. Grucza R, Pekkarinen H, Timonen K, et al. Physiological responses to cold in relation to the phase of the menstrual cycle and oral contraceptives. Ann N Y Acad Sci 1997; 813: 697–701

    PubMed  CAS  Google Scholar 

  204. Rogers SM, Baker MA. Thermoregulation during exercise in women who are taking oral contraceptives. Eur J Appl Physiol 1997; 75: 34–8

    CAS  Google Scholar 

  205. Martin JG, Buono MJ. Oral contraceptives elevate core temperature and heart rate during exercise in the heat. Clin Physiol 1997; 17: 401–8

    PubMed  CAS  Google Scholar 

  206. Frye AJ, Kamen E. Responses to dry heat of men and women with similar aerobic capacities. J Appl Physiol 1981; 50: 65–70

    PubMed  CAS  Google Scholar 

  207. Bar-Or O, Lundegren HM, Buskirk ER. Heat tolerance of exercising obese and lean women. J Appl Physiol 1969; 26: 403–9

    PubMed  CAS  Google Scholar 

  208. Kakitshuba N, Mekjavic IB. Determining the rate of body heat storage by incorporating body composition. Aviat Space Environ Med 1987; 58: 301–7

    Google Scholar 

  209. Kräuchi K, Wirz-Justice A. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol 1994; 267: R819–29

    Google Scholar 

  210. McLellan TM, Gannon GA, Zamecnik J, et al. Low doses of melatonin and diurnal effects on thermoregulation and heat tolerance to uncompensable heat stress. J Appl Physiol 1999; 87: 308–16

    PubMed  CAS  Google Scholar 

  211. Stephenson LA, Wenger CB, O’Donovan BH, et al. Circadian rhythm in sweating and cutaneous blood flow. Am J Physiol 1984; 246: R321–4

    Google Scholar 

  212. Gonzalez-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 1999; 86: 1032–9

    PubMed  CAS  Google Scholar 

  213. Pandolf KB. Aging and human heat tolerance. Exp Aging Res 1995; 23: 69–105

    Google Scholar 

  214. Kenney WL. Thermoregulation at rest and during exercise in healthy older adults. Exerc Sport Sci Rev 1997; 25: 41–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom M. McLellan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, S.S., McLellan, T.M. & Tenaglia, S. The Thermophysiology of Uncompensable Heat Stress. Sports Med 29, 329–359 (2000). https://doi.org/10.2165/00007256-200029050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200029050-00004

Keywords

Navigation