Skip to main content

Advertisement

Log in

The Effect of Altitude on Cycling Performance

A Challenge to Traditional Concepts

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Acute exposure to moderate altitude is likely to enhance cycling performance on flat terrain because the benefit of reduced aerodynamic drag outweighs the decrease in maximum aerobic power [maximal oxygen uptake (V̇O2max)]. In contrast, when the course is mountainous, cycling performance will be reduced at moderate altitude.

Living and training at altitude, or living in an hypoxic environment (~2500m) but training near sea level, are popular practices among elite cyclists seeking enhanced performance at sea level. In an attempt to confirm or refute the efficacy of these practices, we reviewed studies conducted on highly-trained athletes and, where possible, on elite cyclists. To ensure relevance of the information to the conditions likely to be encountered by cyclists, we concentrated our literature survey on studies that have used 2- to 4-week exposures to moderate altitude (1500 to 3000m). With acclimatisation there is strong evidence of decreased production or increased clearance of lactate in the muscle, moderate evidence of enhanced muscle buffering capacity (βm) and tenuous evidence of improved mechanical efficiency (ME) of cycling.

Our analysis of the relevant literature indicates that, in contrast to the existing paradigm, adaptation to natural or simulated moderate altitude does not stimulate red cell production sufficiently to increase red cell volume (RCV) and haemoglobin mass (Hbmass). Hypoxia does increase serum erthyropoietin levels but the next step in the erythropoietic cascade is not clearly established; there is only weak evidence of an increase in young red blood cells (reticulocytes).Moreover, the collective evidence from studies of highly-trained athletes indicates that adaptation to hypoxia is unlikely to enhance sea level V̇O2max. Such enhancement would be expected if RCV and Hbmass were elevated.

The accumulated results of 5 different research groups that have used controlled study designs indicate that continuous living and training at moderate altitude does not improve sea level performance of high level athletes. However, recent studies from 3 independent laboratories have consistently shown small improvements after living in hypoxia and training near sea level. While other research groups have attributed the improved performance to increased RCV and V̇O2max, we cite evidence that changes at the muscle level (βm and ME) could be the fundamental mechanism. While living at altitude but training near sea level may be optimal for enhancing the performance of competitive cyclists, much further research is required to confirm its benefit. If this benefit does exist, it probably varies between individuals and averages little more than 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4

Similar content being viewed by others

References

  1. Rusko H. New aspects of altitude training. Am J Sports Med 1996; 24 (6 Suppl.): S48-S52

    Google Scholar 

  2. Wolski LA, McKenzie DC, Wenger HA. Altitude training for improvements in sea level performance: is there scientific evidence of benefit? Sports Med 1996; 22 (4): 251–63

    Article  PubMed  CAS  Google Scholar 

  3. Bailey DM, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med 1997; 31 (3): 183–90

    Article  PubMed  CAS  Google Scholar 

  4. Cerretelli P, Hoppeler H. Morphologic and metabolic response to chronic hypoxia: the muscle system. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. New York: Oxford University Press, 1996: 1155–81

    Google Scholar 

  5. Saltin B. Exercise and the environment: focus on altitude. Res Q Exerc Sport 1996; 67 (3 Suppl.): S1-S10

    Google Scholar 

  6. Böning D. Altitude and hypoxia training: a short review. Int J Sports Med 1997; 18: 565–70

    Article  PubMed  Google Scholar 

  7. Fulco CS, Rock PB, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful? Aviat Space Environ Med 2000 Feb; 71 (2): 162–71

    PubMed  CAS  Google Scholar 

  8. Mairbäurl H, Schobersberger W, Humpeler E, et al. Beneficial effects of exercising at moderate altitude on red cell oxygen transport and on exercise performance. Pflugers Arch 1986; 406: 594–9

    Article  PubMed  Google Scholar 

  9. International Civil Aviation Organization. Manual of ICAO standard atmosphere. Montreal: International Civil Aviation Organization, 1954: 67

    Google Scholar 

  10. Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med 1998; 69: 793–801

    PubMed  CAS  Google Scholar 

  11. Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol 1993; 67 (2): 150–8

    Article  CAS  Google Scholar 

  12. Gore CJ, Little SC, Hahn AG, et al. Reduced performance of male and female athletes at 580m altitude. Eur J Appl Physiol 1997; 75: 136–43

    Article  CAS  Google Scholar 

  13. Brosnan MJ, Martin DT, Hahn AG, et al. Impaired interval exercise responses in elite female cyclists at moderate simulated altitude. J Appl Physiol 2000; 89: 1819–24

    PubMed  CAS  Google Scholar 

  14. Olds T. The optimal altitude for cycling performance: a mathematical model. Excel 1992; 8: 155–9

    Google Scholar 

  15. Péronnet F, Bouissou P, Perrault H, et al. The one hour cycling record at sea level and at altitude. Cycling Sci 1991; 3: 16–22

    Google Scholar 

  16. Hahn AG, Telford RD, Tumilty DM, et al. The effect of supplementary hypoxic training on physiological characteristics and ergometer performance of rowers. Excel 1992; 8: 127–38

    Google Scholar 

  17. Vallier JM, Chateau P, Guezennec CY. Effects of physical training in a hypobaric chamber on the physical performance of competitive triathletes. Eur J Appl Physiol 1996; 73 (5): 471–8

    Article  CAS  Google Scholar 

  18. Meeuwsen T, Hendriksen IJM, Holewijn M. Training-induced increases in sea-level performance is enhanced by acute intermittent hypobaric hypoxia: a 2 year cross over study [abstract]. Med Sci Sports Exerc 2000; 32 (5): S251

    Google Scholar 

  19. Levine BD, Stray-Gundersen J, Duhaime G, et al. ‘Living high — training low’: the effect of altitude acclimatization/normoxic training in trained runners [abstract]. Med Sci Sports Exerc 1991; 23: S25

    Google Scholar 

  20. Rusko HK, Leppävuori A, Mäkelä P, et al. Living high, training low: a new approach to altitude training at sea level in athletes [abstract]. Med Sci Sports Exerc 1995; 27 (5): S6

    Google Scholar 

  21. Levine BD, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med 1992; 13 Suppl. 1: S209-S212

    Article  Google Scholar 

  22. Buskirk ER, Kollias J, Akers RF, et al. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol 1967; 23 (2): 259–66

    PubMed  CAS  Google Scholar 

  23. Ashenden MJ, Gore CJ, Martin DT, et al. Effects of a 12-day ‘live high, train low’ camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol 1999 Oct; 80 (5): 472–8

    Article  CAS  Google Scholar 

  24. Ashenden MJ, Gore CJ, Dobson GP, et al. ‘Live high, train low’ does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol 1999 Oct; 80 (5): 479–84

    Article  CAS  Google Scholar 

  25. Schoene RB. Control of breathing at high altitude. Respiration 1997; 64: 407–15

    Article  PubMed  CAS  Google Scholar 

  26. Dempsey JA, Forster HV. Mediation of ventilatory adaptations. Physiol Rev 1982; 62: 262–346

    PubMed  CAS  Google Scholar 

  27. Bisgard GE, Forster HV. Ventilatory responses to acute and chronic hypoxia. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. New York: Oxford University Press, 1996: 1207–38

    Google Scholar 

  28. Ward MP, Milledge JS, West JB. High altitude medicine and physiology. London: Chapman and Hall Medical, 1989: 195

    Google Scholar 

  29. Nummela A, Rusko H. Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J Sports Sci 2000 Jun; 18 (6): 411–9

    Article  PubMed  CAS  Google Scholar 

  30. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol 1989 Dec; 257 (6 Pt 2): R1282-R1302

    Google Scholar 

  31. Ramirez G, Hammond M, Agosti SJ, et al. Effects of hypoxemia at sea level and high altitude on sodium excretion and hormonal levels. Aviat Space Environ Med 1992 Oct; 63 (10): 891–8

    PubMed  CAS  Google Scholar 

  32. Faulkner JA, Daniels JT, Balke B. Effects of training at moderate altitude on physical performance capacity. J Appl Physiol 1967; 23 (1): 85–9

    PubMed  CAS  Google Scholar 

  33. Hansen JE, Vogel JA, Stelter GP, et al. Oxygen uptake in man during exhaustive work at sea level and high altitude. J Appl Physiol 1967; 23 (4): 511–22

    PubMed  CAS  Google Scholar 

  34. Rice AJ, Thornton AT, Gore CJ, et al. Pulmonary gas exchange during exercise in highly trained cyclists with arterial hypoxemia. J Appl Physiol 1999 Nov; 87 (5): 1802–12

    PubMed  CAS  Google Scholar 

  35. Gore CJ, Hahn AG, Scroop GC, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol 1996; 80 (6): 2204–10

    PubMed  CAS  Google Scholar 

  36. Hahn AG, Gore CJ, Martin DT, et al. An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol A Mol Integr Physiol 2001 Apr; 128 (4): 777–89

    Article  PubMed  CAS  Google Scholar 

  37. Harms CA, Babcock MA, McClaran SR, et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 1997; 82 (5): 1573–83

    PubMed  CAS  Google Scholar 

  38. Wetter TJ, Harms CA, Nelson WB, et al. Influence of respiratory muscle work on VȮ2 and leg blood flow during submaximal exercise. J Appl Physiol 1999; 87: 643–51

    PubMed  CAS  Google Scholar 

  39. Jung RC, Dill DB, Horton R, et al. Effects of age on plasma aldosterone levels and hemoconcentration at altitude. J Appl Physiol 1971; 31: 593–7

    PubMed  CAS  Google Scholar 

  40. Fisher JW. Recent advances in erythropoietin research. Prog Drug Res 1993; 41: 293–311

    PubMed  CAS  Google Scholar 

  41. Hoyt RW, Honig A. Body fluid and energy metabolism at high altitude. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. Section 4: Environmental physiology. Washington, DC: American Physiological Society, 1996: 1277–89

    Google Scholar 

  42. Reeves JT, Mazzeo RS, Wolfel EE, et al. Increased arterial pressure after acclimatization to 4300 m: possible role of norepinephrine. Int J Sports Med 1992 Oct; 13 Suppl. 1: S18-S21

    Article  Google Scholar 

  43. Mazzeo RS, Child A, Butterfield GE, et al. Catecholamine response during 12 days of high-altitude exposure (4,300 m) in women. J Appl Physiol 1998; 84 (4): 1151–7

    PubMed  CAS  Google Scholar 

  44. Piehl Aulin K, Svedenhag J, Wide L, et al. Short-term intermittent normobaric hypoxia - haematological, physiological and mental effects. Scand J Med Sci Sports 1998; 8: 132–7

    Article  PubMed  CAS  Google Scholar 

  45. Ashenden MJ, Gore CJ, Dobson GP, et al. Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur J Appl Physiol 2000 Mar; 81 (5): 428–35

    Article  PubMed  CAS  Google Scholar 

  46. Parisotto R, Gore CJ, Emslie KR, et al. A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica 2000 Jun; 85 (6): 564–72

    PubMed  CAS  Google Scholar 

  47. Vogel JA, Harris CW. Cardiopulmonary responses of resting man during early exposure to high altitude. J Appl Physiol 1967 Jun; 22 (6): 1124–8

    PubMed  CAS  Google Scholar 

  48. Mirrakhimov MM, Winslow RM. The cardiovascular system at high altitude. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. New York: Oxford University Press, 1996: 1241–57

    Google Scholar 

  49. Alexander JK, Hartley LH, Modelski M, et al. Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. J Appl Physiol 1967 Dec; 23 (6): 849–58

    PubMed  CAS  Google Scholar 

  50. Saltin B, Grover RF, Blomqvist CG, et al. Maximal oxygen uptake and cardiac output after two weeks at 4,300m. J Appl Physiol 1968; 25 (4): 400–9

    Google Scholar 

  51. Vogel JA, Hartley LH, Cruz JC, et al. Cardiac output during exercise in sea-level residents at sea level and high altitude. J Appl Physiol 1974 Feb; 36 (2): 169–72

    PubMed  CAS  Google Scholar 

  52. Ferretti G, Boutellier U, Pendergast DR, et al. Oxygen transport system before and after exposure to chronic hypoxia. Int J Sports Med 1990; 11 Suppl. 1: S15-S20

    Article  Google Scholar 

  53. Wolfel EE, Groves BM, Brooks GA, et al. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. J Appl Physiol 1991; 70 (3): 1129–36

    PubMed  CAS  Google Scholar 

  54. Wolfel EE, Selland MA, Mazzeo RS, et al. Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J Appl Physiol 1994 Apr; 76 (4): 1643–50

    PubMed  CAS  Google Scholar 

  55. Klausen K, Robinson S, Micahel ED, et al. Effect of high altitude on maximal working capacity. J Appl Physiol 1966; 21 (4): 1191–4

    PubMed  CAS  Google Scholar 

  56. Consolazio CF. Submaximal and maximal performance at high altitude. In: Goddard RF, editor. US Olympic Committee, Lovelace Foundation for Medical Education and Research, and the University of New Mexico Symposium. The effects of altitude on physical performance; 1966 Mar 3–6;Albuquerque (NM). Chicago (IL): The Athletic Institute, 1967: 91–6

    Google Scholar 

  57. Adams WC, Bernauer EM, Dill DB, et al. Effects of equivalent sea level and altitude training on VȮ2max and running performance. J Appl Physiol 1975; 39 (2): 262–6

    PubMed  CAS  Google Scholar 

  58. Hartley LH, Vogel JA, Cruz JC. Reduction of maximal exercise heart rate at altitude and its reversal with atropine. J Appl Physiol 1974; 36 (3): 362–5

    PubMed  CAS  Google Scholar 

  59. Maher JT, Manchanda SC, Cymerman A, et al. Cardiovascular responsiveness to beta-adrenergic stimulation and blockade in chronic hypoxia. Am J Physiol 1975 Feb; 228 (2): 477–81

    PubMed  CAS  Google Scholar 

  60. Richalet JP, Larmignat P, Rathat C, et al. Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. J Appl Physiol 1988 Nov; 65 (5): 1957–61

    PubMed  CAS  Google Scholar 

  61. Voelkel NF, Hegstrand L, Reeves JT, et al. Effects of hypoxia on density of beta-adrenergic receptors. J Appl Physiol 1981 Feb; 50 (2): 363–6

    PubMed  CAS  Google Scholar 

  62. Alexander JK, Grover RF. Mechanism of reduced cardiac stroke volume at high altitude. Clin Cardiol 1983 Jun; 6 (6): 301–3

    Article  PubMed  CAS  Google Scholar 

  63. Levine BD, Stray-Gundersen J. ‘Living high-training low’: effect of moderate-altitude acclimatization with low altitude training on performance. J Appl Physiol 1997; 83 (1): 102–12

    PubMed  CAS  Google Scholar 

  64. Wolfel EE, Selland MA, Cymerman A, et al. O2 extraction maintains O2 uptake during submaximal exercise with ß-adrenergic blockade at 4,300 m. J Appl Physiol 1998; 85: 1092–102

    PubMed  CAS  Google Scholar 

  65. Svedenhag J, Piehl-Aulin K, Skog C, et al. Increased left ventricular muscle mass after long-term altitude training in athletes. Acta Physiol Scand 1997; 161: 63–70

    Article  PubMed  CAS  Google Scholar 

  66. Liu Y, Steinacker JM, Dehnert C, et al. Effect of ‘living high training low’ on the cardiac functions at sea level. Int J Sports Med 1998; 19: 380–4

    Article  PubMed  CAS  Google Scholar 

  67. Lenfant C, Torrance JD, Reynafarje C. Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol 1971 May; 30 (5): 625–31

    PubMed  CAS  Google Scholar 

  68. Puranen AS, Rusko HK. On- and off-responses of EPO, reticulocytes, 2,3-DPG and plasma volume to living high, training low [abstract]. Med Sci Sports Exerc 1996; 28 (5): S159

    Google Scholar 

  69. Hütler M, Schick R, Dehnert C, et al. ‘Sleep high — train low’, effects of the hypoxia component [abstract]. Int J Sports Med 1998; 19: S17

    Google Scholar 

  70. Winslow RM. Red cell function at extreme altitude. In: West JB, Lahiri S, editors. High altitude and man. Bethseda (MD): Amercian Physiological Society, 1984: 59–72

    Google Scholar 

  71. Molé PA, Chung Y, Tran TK, et al. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 1999 Jul; 277 (1 Pt 2): R173-R180

    Google Scholar 

  72. Tappan DV, Reynafarje BD. Tissue pigment manifestations of adaptations to high altitudes. Am J Physiol 1957; 190: 99–103

    PubMed  CAS  Google Scholar 

  73. Reynafarje B. Myoglobin content and enzymatic activity of muscle and altitude adaptation. J Appl Physiol 1962; 17: 301–5

    PubMed  CAS  Google Scholar 

  74. Sillau AH, Aquin L, Bui MV, et al. Chronic hypoxia does not affect guinea pig skeletal muscle capillarity. Pflugers Arch 1980 Jul; 386 (1): 39–45

    Article  PubMed  CAS  Google Scholar 

  75. Terrados N, Melichna J, Sylven C, et al. Decrease in skeletal muscle myoglobin with intensive training in man. Acta Physiol Scand 1986 Dec; 128 (4): 651–2

    Article  PubMed  CAS  Google Scholar 

  76. Terrados N, Jansson E, Sylvén C, et al. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 1990; 68 (6): 2369–72

    PubMed  CAS  Google Scholar 

  77. Hoppeler H, Kleinert E, Schlegel C, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 1990; 11 Suppl. 1: S3-S9

    Article  Google Scholar 

  78. Gore C, Craig N, Hahn A, et al. Altitude training at 2690m does not increase total haemoglobin mass or sea level VȮ2max in world champion track cyclists. J Sci Med Sport 1998; 1: 156–70

    Article  PubMed  CAS  Google Scholar 

  79. Pyne DB. Performance and physiological changes in highly trained swimmers during altitude training. Coach Sport Sci J 1998; 3: 42–8

    Google Scholar 

  80. Mizuno M, Juel C, Bro-Rasmussen T, et al. Limb skeletal muscle adaptation in athletes after training at altitude. J Appl Physiol 1990; 68 (2): 496–502

    PubMed  CAS  Google Scholar 

  81. Stray-Gundersen J, Levine BD, Bertocci LA. Effect of altitude training on runner’s skeletal muscle [abstract]. Med Sci Sports Exerc 1999; 31 (5): S182

    Google Scholar 

  82. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 1967 May; 242 (9): 2278–82

    PubMed  CAS  Google Scholar 

  83. Gollnick PD, Armstrong RB, Saltin B, et al. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 1973 Jan; 34 (1): 107–11

    PubMed  CAS  Google Scholar 

  84. Green HJ, Jones S, Ball-Burnett M, et al. Adaptations in muscle metabolism to prolonged voluntary exercise and training. J Appl Physiol 1995 Jan; 78 (1): 138–45

    PubMed  CAS  Google Scholar 

  85. Ingjer F. Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol (Lond) 1979 Sep; 294: 419–32

    CAS  Google Scholar 

  86. Bylund AC, Hammarsten J, Holm J, et al. Enzyme activities in skeletal muscles from patients with peripheral arterial insufficiency. Eur J Clin Invest 1976 Nov; 6 (6): 425–9

    Article  PubMed  CAS  Google Scholar 

  87. Young AJ, Evans WJ, Fisher EC, et al. Skeletal muscle metabolism of sea-level natives following short-term high-altitude residence. Eur J Appl Physiol 1984; 52 (4): 463–6

    Article  CAS  Google Scholar 

  88. Svedenhag J, Henriksson J, Sylven C. Dissociation of training effects on skeletal muscle mitochondrial enzymes and myoglobin in man. Acta Physiol Scand 1983 Feb; 117 (2): 213–8

    Article  PubMed  CAS  Google Scholar 

  89. Svedenhag J, Henriksson J, Juhlin-Dannfelt A. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity. Am J Physiol 1984 Sep; 247 (3 Pt 1): E305-E311

    Google Scholar 

  90. Richardson RS, Leigh JS, Wagner PD, et al. Cellular PO2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle. J Appl Physiol 1999; 87: 325–31

    PubMed  CAS  Google Scholar 

  91. Terrados N, Melichna J, Sylvén C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 1988; 57: 203–9

    Article  CAS  Google Scholar 

  92. Saltin B, Kim CK, Terrados N, et al. Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand J Med Sci Sports 1995; 5: 222–30

    Article  PubMed  CAS  Google Scholar 

  93. Melissa L, MacDougall JD, Tarnopolsky MA, et al. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med Sci Sports Exerc 1997; 29: 238–43

    PubMed  CAS  Google Scholar 

  94. Morris DM, Kearney JT, Burke ER. The effects of breathing supplemental oxygen during altitude training on cycle performance. J Sci Med Sport 2000; 3 (2): 165–75

    Article  PubMed  CAS  Google Scholar 

  95. Brooks GA, Wolfel EE, Butterfield GE, et al. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude. Am J Physiol 1998; 275: R1192-R1201

    Google Scholar 

  96. Bender PR, Groves BM, McCullough RE, et al. Decreased exercise muscle lactate release after high altitude acclimatization. J Appl Physiol 1989; 67 (4): 1456–62

    PubMed  CAS  Google Scholar 

  97. Brooks GA, Wolfel EE, Groves BM, et al. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J Appl Physiol 1992; 72: 2435–45

    PubMed  CAS  Google Scholar 

  98. Young AJ. Energy substrate utilization during exercise in extreme environments. Exerc Sport Sci Rev 1990; 18: 65–117

    Article  PubMed  CAS  Google Scholar 

  99. Ingjer F, Myhre K. Physiological effects of altitude training on elite male cross-country skiers. J Sports Sci 1992; 10: 37–47

    Article  PubMed  CAS  Google Scholar 

  100. Bailey DM, Davies B, Romer L, et al. Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol 1998; 78: 360–8

    Article  CAS  Google Scholar 

  101. Chung D-S, Lee J-G, Kim E-H, et al. The effects of altitude training on blood cells, maximal oxygen uptake and swimming performance. Korean J Sci 1995; 7: 35–46

    Google Scholar 

  102. Asano K, Sub S, Matsuzaka A, et al. The influences of simulated high altitude training on work capacity and performance in middle & long distance runners. Bull Health Sports Sci 1986; 9: 195–202

    Google Scholar 

  103. Hochachka PW. Metabolic defense adaptations to hypobaric hypoxia in man. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. Section 4: Environmental physiology. Washington, DC: American Physiological Society; 1996: 1115–23

    Google Scholar 

  104. Weltman A. The blood lactate response to exercise. Champaign (IL): Human Kinetics; 1995

    Google Scholar 

  105. Young AJ, Evans WJ, Cymerman A, et al. Sparing effect of chronic high-altitude exposure on muscle glycogen utilization. J Appl Physiol 1982; 52: 857–62

    PubMed  CAS  Google Scholar 

  106. Roberts AC, Butterfield GE, Cymerman A, et al. Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol 1996; 81: 1762–71

    PubMed  CAS  Google Scholar 

  107. Roberts AC, Reeves JT, Butterfield GE, et al. Altitude and betablockade augment glucose utilization during submaximal exercise. J Appl Physiol 1996; 80: 605–15

    PubMed  CAS  Google Scholar 

  108. Snell PG, Mitchell JH. The role of maximal oxygen uptake in exercise performance. Clin Chest Med 1984; 5 (1): 51–62

    PubMed  CAS  Google Scholar 

  109. Loftin M, Warren B. Comparison of a simulated 16.1-km time trial,VȮ2max and related factors in cyclists with different ventilatory thresholds. Int J Sports Med 1994; 15 (8): 498–503

    Article  PubMed  CAS  Google Scholar 

  110. Green HJ, Roy B, Grant S, et al. Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 2000; 89: 1189–97

    PubMed  CAS  Google Scholar 

  111. Gore CJ, Gawthorn K, Clark S, et al. Does intermittent normobaric hypoxic exposure uncouple submaximal VȮ2 and power? [abstract]. Med Sci Sports Exerc 1999; 31 (5): S190

    Google Scholar 

  112. Hochachka PW, Stanley C, Matheson GO, et al. Metabolic and work efficiencies during exercise in Andean natives. J Appl Physiol 1991; 70 (4): 1720–30

    PubMed  CAS  Google Scholar 

  113. Grassi B, Marzorati M, Kayser B, et al. Peak blood lactate and blood lactate vs. workload during acclimatization to 5,050 m and in deacclimatization. J Appl Physiol 1996; 80 (2): 685–92

    PubMed  CAS  Google Scholar 

  114. Green H, MacDougall J, Tarnopolsky M, et al. Downregulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia. J Appl Physiol 1999; 86: 1745–8

    PubMed  CAS  Google Scholar 

  115. Green H, Roy B,Grant S, et al. Down regulation in muscle Na+-K+-ATPase following a 21-day expedition to 6,194 m. J Appl Physiol 2000 Feb; 88 (2): 634–40

    PubMed  CAS  Google Scholar 

  116. Parkhouse WS, McKenzie DC, Hochachka PW, et al. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 1985 Jan; 58 (1): 14–7

    PubMed  CAS  Google Scholar 

  117. Gore CJ, Hahn AG, Aughey RJ, et al. Live high: train low changes muscle buffering capacity. Pre-Olympic Congress on Sport Science, Sports Medicine and Physical Education; 2000 Sep 7–12; Brisbane, 62

  118. Sharp RL, Costill DL, Fink WJ, et al. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity. Int J Sports Med 1986 Feb; 7 (1): 13–7

    Article  PubMed  CAS  Google Scholar 

  119. Mannion AF, Jakeman PM, Willan PL. Effects of isokinetic training of the knee extensors on high-intensity exercise performance and skeletal muscle buffering. Eur J Appl Physiol 1994; 68 (4): 356–61

    Article  CAS  Google Scholar 

  120. Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol 1997; 75: 7–13

    Article  CAS  Google Scholar 

  121. Berglund B. High-altitude training. Aspects of haematological adaptation. Sports Med 1992; 14 (5): 289–303

    Article  PubMed  CAS  Google Scholar 

  122. Buick FJ, Gledhill N, Froese AB, et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48 (4): 636–42

    PubMed  CAS  Google Scholar 

  123. Kanstrup I-L, Ekblom B. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med Sci Sports Exerc 1984; 16 (3): 256–62

    PubMed  CAS  Google Scholar 

  124. Wagner PD. New ideas on limitations to VȮ2max. Exerc Sport Sci Rev 2000; 28: 10–4

    PubMed  CAS  Google Scholar 

  125. Berglund B, Fleck SJ, Kearney JT, et al. Serum erythropoietin in athletes at moderate altitudes. Scand J Med Sci Sports 1992; 2: 21–5

    Article  Google Scholar 

  126. Stray-Gundersen J, Mordecai N, Levine BD. O2 transport response to altitude training in runners. Med Sci Sports Exerc 1995; 27: S202

    Google Scholar 

  127. Rusko HK, Penttinen JTT, Koistinen PO, et al. A new solution to simulate altitude and stimulate erythropoiesis at sea level in athletes. In: Viitasalo J, Kujala U, editors. International Congress on Applied Research in Sports. The way to win; 1994 Aug 9–11; Helsinki. Helsinki: The Finnish Society for Research in Sport and Physical education, 1995: 287–9

    Google Scholar 

  128. Mattila V, Rusko H. Effect of living high and training low on sea level performance in cyclists [abstract]. Med Sci Sports Exerc 1996; 28 (5): S156

    Google Scholar 

  129. Abbrecht PH, Littell JK. Plasma erythropoietin in men and mice during acclimatization to different altitudes. J Appl Physiol 1972 Jan; 32 (1): 54–8

    PubMed  CAS  Google Scholar 

  130. Milledge JS, Cotes PM. Serum erythropoietin in humans at high altitude and its relation to plasma renin. J Appl Physiol 1985 Aug; 59 (2): 360–4

    PubMed  CAS  Google Scholar 

  131. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol 1998; 85 (4): 1448–56

    PubMed  CAS  Google Scholar 

  132. Miller ME, Rorth M, Parving HH, et al. pH effect on erythropoietin response to hypoxia. N Engl J Med 1973; 288 (14): 706–10

    Article  PubMed  CAS  Google Scholar 

  133. Eckardt KU, Kurtz A, Bauer C. Triggering of erythropoietin production by hypoxia is inhibited by respiratory and metabolic acidosis. Am J Physiol 1990; 258 (3 Part 2): R678-R683

    Google Scholar 

  134. Ou LC, Salceda S, Schuster SJ, et al. Polycythemic responses to hypoxia: molecular and genetic mechanisms of chronic mountain sickness. J Appl Physiol 1998 Apr; 84 (4): 1242–51

    PubMed  CAS  Google Scholar 

  135. Eckardt KU, Dittmer J, Neumann R, et al. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 1990 May; 258 (5 Pt 2): F1432-F1437

    Google Scholar 

  136. Feelders RA, Kuiper-Kramer EP, van Eijk HG. Structure, function and clinical significance of transferrin receptors. Clin Chem Lab Med 1999 Jan; 37 (1): 1–10

    Article  PubMed  CAS  Google Scholar 

  137. Beguin Y. The soluble transferrin receptor: biological aspects and clinical usefulness as quantitative measure of erythropoiesis. Haematologica 1992 Jan; 77 (1): 1–10

    PubMed  CAS  Google Scholar 

  138. Grover RF, Selland MA, McCullough RG, et al. ƒÀ-adrenergic blockade does not prevent polycythemia or decrease in plasma volume in men at 4300 m altitude. Eur J Appl Physiol 1998; 77: 264–70

    Article  CAS  Google Scholar 

  139. Klausen T, Mohr T, Ghisler U, et al. Maximal oxygen uptake and erythropoietic responses after training at moderate altitude. Eur J Appl Physiol 1991; 62: 376–9

    Article  CAS  Google Scholar 

  140. Friedmann B, Jost J, Rating T, et al. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude. Int J Sports Med 1999; 20: 78–85

    PubMed  CAS  Google Scholar 

  141. Tarallo P, Humbert JC, Mahassen P, et al. Reticulocytes: biological variations and reference limits. Eur J Haematol 1994 Jul; 53 (1): 11–5

    Article  PubMed  CAS  Google Scholar 

  142. Koistinen PO, Rusko H, Irjala K, et al. EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Med Sci Sports Exerc 2000; 32 (4): 800–4

    Article  PubMed  CAS  Google Scholar 

  143. Rodriguez FA, Casas H, Casas M, et al. Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med Sci Sports Exerc 1999; 31: 264–8

    Article  PubMed  CAS  Google Scholar 

  144. Rodriguez FA, Ventura JL, Casas M, et al. Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 2000 Jun; 82 (3): 170–7

    Article  PubMed  CAS  Google Scholar 

  145. Ashenden M, Parisotto R, Dobson G, et al. Reticulocyte parameters can be obtained from capillary blood samples. Aust J Med Sci 1997; 18: 78–83

    Google Scholar 

  146. Stray-Gundersen J, Chapman R, Levine BD. HiLo training improves performance in elite runners [abstract]. Med Sci Sports Exerc 1998; 30 (5): S35

    Google Scholar 

  147. Rusko HK, Tikkanen H, Paavolainen L, et al. Effect of living in hypoxia and training in normoxia on sea level VȮ2max and red cell mass [abstract]. Med Sci Sports Exerc 1999; 31: S86

    Google Scholar 

  148. Stray-Gundersen J, Karlsen T, Resaland GK, et al. No difference in 3-day EPO response to 8, 12, or 16 hours/day of intermittent hypoxia [abstract]. Med Sci Sports Exerc 2000; 32 (5): S251

    Google Scholar 

  149. Alfrey CP, Udden MM, Huntoon CL, et al. Destruction of newly released red blood cells in space flight. Med Sci Sports Exerc 1996; 28 Suppl. 10: S42-S44

    Article  Google Scholar 

  150. Lawson HC. The volume of blood - a critical examination of methods for its measurement. In: Hamilton WF, editor. Handbook of physiology. Section 2: Circulation. Washington, DC: American Physiological Society, 1962: 23–49

    Google Scholar 

  151. Recommended methods for measurement of red-cell and plasma volume: International Committee for Standardization in Haematology. J Nucl Med 1980; 21 (8): 793–800

    Google Scholar 

  152. Weil JV, Jamieson G, Brown DW, et al. The red cell mass-arterial oxygen relationship in normal man: application to patients with chronic obstructive airways disease. J Clin Invest 1968; 47: 1627–39

    Article  PubMed  CAS  Google Scholar 

  153. Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000 Feb; 32 (2): 332–48

    Article  PubMed  CAS  Google Scholar 

  154. Hansen JM, Olsen NV, Feldt-Rasmussen B, et al. Albuminuria and overall capillary permeability of albumin in acute altitude hypoxia. J Appl Physiol 1994; 76 (5): 1922–7

    PubMed  CAS  Google Scholar 

  155. Lewis DM, Bradwell AR, Shore AC, et al. Capillary filtration coefficient and urinary albumin leak at altitude. Eur J Clin Invest 1997; 27: 64–8

    Article  PubMed  CAS  Google Scholar 

  156. Kleger G-R, Bartsch P, Vock P, et al. Evidence against an increase in capillary permeability in subjects exposed to high altitude. J Appl Physiol 1996; 81 (5): 1917–23

    PubMed  CAS  Google Scholar 

  157. Poulsen TD, Klausen T, Richalet J-P, et al. Plasma volume in acute hypoxia: comparison of a carbon monoxide rebreathing method and dye dilution with Evans’s blue. Eur J Appl Physiol 1998; 77: 457–61

    Article  CAS  Google Scholar 

  158. Burge CM, Skinner SL. Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol 1995; 79 (2): 623–31

    PubMed  CAS  Google Scholar 

  159. Dill DB, Braithwaite K, Adams WC, et al. Blood volume of middle-distance runners: effect of 2,300-m altitude and comparison with non-athletes. Med Sci Sports 1974; 6 (1): 1–7

    PubMed  CAS  Google Scholar 

  160. Nomof NJ, Hopper J, Brown E, et al. Simultaneous determinations of the total volume of red blood cells by use of carbon monoxide and chromium 51 in healthy and diseased subjects. J Clin Invest 1954; 33: 1382–7

    Article  PubMed  CAS  Google Scholar 

  161. Nickerson JL, Sharpe LM, Root WS, et al. Simultaneous blood volume determinations in dogs with dye (T-1824) carbon monoxide and radioactive Fe55 [abstract]. Fed Proc 1950; 9: 94

    Google Scholar 

  162. Root WS, Allen TH, Gregersen MI. Simultaneous determinations in splenectomized dogs of cell volume with CO and P32, and plasma volume with T-1824. Am J Physiol 1953; 175: 233–5

    PubMed  CAS  Google Scholar 

  163. Thomsen JK, Fogh-Andersen N, Bulow K, et al. Blood and plasma volumes determined by carbon monoxide gas, 99mTc-labelled erythrocytes, 125I-albumin and the T 1824 technique. Scand J Clin Lab Invest 1991; 51: 185–90

    Article  PubMed  CAS  Google Scholar 

  164. Blackmore DJ. Distribution of HbCO in human erythrocytes following inhalation of CO. Nature 1970; 227: 386

    Article  PubMed  CAS  Google Scholar 

  165. Reynafarje C, Lozano R, Valdivieso J. The polycythemia of high altitudes: iron metabolism and related aspects. Blood 1959; 14: 433–55

    PubMed  CAS  Google Scholar 

  166. Sanchez C, Merino C, Figallo M. Simultaneous measurement of plasma volume and cell mass in polycythemia of high altitude. J Appl Physiol 1970; 28 (6): 775–8

    PubMed  CAS  Google Scholar 

  167. Stokke KT, Rootwelt K, Wergeland R, et al. Changes in plasma and red cell volumes during exposure to high altitude. Scand J Clin Lab Invest 1986; 46 Suppl. 184: 113–7

    Google Scholar 

  168. Sawka MN, Young AJ, Rock PB, et al. Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion. J Appl Physiol 1996; 81 (2): 636–42

    PubMed  CAS  Google Scholar 

  169. Telford RD, Graham KS, Hahn AG, et al. The effect of medium altitude training on sea-level performance of elite distance runners. The Australian Conference of Science and Medicine in Sports; 1995 Oct 17–20; Hobart

  170. Brotherhood J, Brozovic B, Pugh LGC. Haematological status of middle- and long-distance runners. Clin Sci Mol Med 1975; 48: 139–45

    PubMed  CAS  Google Scholar 

  171. Boyd GW. The resproducibility and accuracy of plasma volume estimation in the sheep with both 131I gamma globulin and Evan’s blue. Aust J Exp Biol Med Sci 1967; 45 (1): 51–75

    Article  PubMed  CAS  Google Scholar 

  172. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med 2000; 30: 1–15

    Article  PubMed  CAS  Google Scholar 

  173. Stray-Gundersen J, Alexander C, Hochstein A, et al. Failure of red cell volume to increase to altitude exposure in iron deficient runners [abstract]. Med Sci Sports Exerc 1992; 24: S90

    Google Scholar 

  174. Stray-Gundersen J, Hochstein A, Levine BD. Effect of 4 weeks altitude exposure and training on red cell mass in trained runners [abstract]. Med Sci Sports Exerc 1992; 25: S171

    Google Scholar 

  175. Saltin B. Aerobic and anaerobic work capacity at an altitude of 2,250 meters. In: Goddard RF, editor. US Olympic Committee, Lovelace Foundation for Medical Education and Research, and the University of New Mexico Symposium. The effects of altitude on physical performance; 1966 Mar 3–6; Albuquerque (NM). Chicago (IL): The Athletic Institute, 1967: 97–102

    Google Scholar 

  176. Pugh LGCE. Athletes at altitude. J Physiol 1967; 192: 619–46

    PubMed  CAS  Google Scholar 

  177. Daniels J, Oldridge N. The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Med Sci Sports 1970; 2 (3): 107–12

    PubMed  CAS  Google Scholar 

  178. Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3,090-m altitude in high school champion runners. J Appl Physiol 1971; 30 (6): 854–9

    PubMed  CAS  Google Scholar 

  179. Jensen K, Nielsen TS, Fiskestrand Å, et al. High-altitude training does not increase maximal oxygen uptake or work capacity at sea level in rowers. Scand J Med Sci Sports 1993; 3: 256–62

    Article  Google Scholar 

  180. Pott F, Jensen K, Hansen H, et al. Middle cerebral artery blood velocity and plasma catecholamines during exercise. Acta Physiol Scand 1996; 158: 349–56

    Article  PubMed  CAS  Google Scholar 

  181. Grover RF, Reeves JT. Exercise performance of athletes at sea level and 3,100 meters altitude. In: Goddard RF, editor. US Olympic Committee, Lovelace Foundation for Medical Education and Research, and the University of New Mexico Symposium. The effects of altitude on physical performance; 1966 Mar 3–6; Albuquerque (NM). Chicago (IL): The Athletic Institute, 1967: 80–7

    Google Scholar 

  182. Svedenhag J, Saltin B, Johansson C, et al. Aerobic and anaerobic exercise capacities of elite middle-distance runners after two weeks of training at moderate altitude. Scand J Med Sci Sports 1991; 1: 205–14

    Article  Google Scholar 

  183. Telford RD, Graham KS, Sutton JR, et al. Medium altitude training and sea-level performance [abstract]. Med Sci Sports Exerc 1996; 28 (5): S124

    Google Scholar 

  184. Smith MH, Sharkey BJ. Altitude training: who benefits? Phys Sportsmed 1984; 12 (4): 48–62

    Google Scholar 

  185. Speed HD, Andersen MB. What exercise and sport scientists don’t understand. J Sci Med Sport 2000; 3 (1): 84–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are especially indebted to our colleagues Dr Michael Ashenden, Dr David Martin, Dr Peter Logan, Dr David Pyne and Robin Parisotto with whom we discussed and developed, over a period of several years, the concepts presented in this manuscript.

The authors would like to express their gratitude to the coaches and athletes who co-operated so willingly in our research into altitude training/hypoxia. Without their support this manuscript would not be possible. These people include: Charlie Walsh, Australian National Cycling Coach and James Victor, Australian Women’s Road Cycling Coach. The advocacy of Neil Craig, Co-ordinator of Sport Sciences for Cycling Australian was instrumental in our successful collaboration with Australia’s elite cyclists. Steve Lawrence, Manager of Sport Sciences at the Western Australian Institute of Sport was kind enough to provide testing facilities and staff for work conducted in Perth, Australia. We are most grateful for the assistance of Dr Arturo Térres, Medical Director at the Carpemor Hospital, Mexico City, for conducting haematological analysis on the blood of Australian cyclists training in Mexico.

The technical support of numerous staff also warrant particular mention. These people include: (at the Australian Institute of Sport) Rob Shugg, Evan Lawton, Robert Spence, Hamilton Lee, Kath Gawthorn, Robyn Power, Melissa Clough, Nicole Horvath, Simone Ransley, Graeme Allbon, Sally Clark, Gary Slater, Tanya Boston, Kim Putland and Maria Brosnan; (at the South Australian Sports Institute) Pitre Bourdon, Tom Stanef, Bernard Savage, Sarah Woolford, Dr Peter Barnes and Sarah Pierce; and (at the Western Australian Institute of Sport) Claire Rechichi and Ted Polglaze.

The financial support for some of the projects described in this manuscript came from 3 primary sources: the Australian Sports Commission, BOC Gases Australia Ltd. and the International Olympic Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan G. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, A.G., Gore, C.J. The Effect of Altitude on Cycling Performance. Sports Med 31, 533–557 (2001). https://doi.org/10.2165/00007256-200131070-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131070-00008

Keywords

Navigation