Skip to main content
Log in

Thermoregulation and Marathon Running

Biological and Environmental Influences

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The extreme physical endurance demands and varied environmental settings of marathon footraces have provided a unique opportunity to study the limits of human thermoregulation for more than a century. High post-race rectal temperatures (Tre) are commonly and consistently documented in marathon runners, yet a clear divergence of thought surrounds the cause for this observation. A close examination of the literature reveals that this phenomenon is commonly attributed to either biological (dehydration, metabolic rate, gender) or environmental factors.

Marathon climatic conditions vary as much as their course topography and can change considerably from year to year and even from start to finish in the same race. The fact that climate can significantly limit temperature regulation and performance is evident from the direct relationship between heat casualties and Wet Bulb Globe Temperature (WBGT), as well as the inverse relationship between record setting race performances and ambient temperatures. However, the usual range of compensable racing environments actually appears to play more of an indirect role in predicting Tre by acting to modulate heat loss and fluid balance.

The importance of fluid balance in thermoregulation is well established. Dehydration-mediated perturbations in blood volume and blood flow can compromise exercise heat loss and increase thermal strain. Although progressive dehydration reduces heat dissipation and increases Tre during exercise, the loss of plasma volume contributing to this effect is not always observed for prolonged running and may therefore complicate the predictive influence of dehydration on Tre for marathon running.

Metabolic heat production consequent to muscle contraction creates an internal heat load proportional to exercise intensity. The correlation between running speed and Tre, especially over the final stages of a marathon event, is often significant but fails to reliably explain more than a fraction of the variability in post-marathon Tre. Additionally, the submaximal exercise intensities observed throughout 42km races suggest the need for other synergistic factors or circumstances in explaining this occurrence

There is a paucity of research on women marathon runners. Some biological determinants of exercise thermoregulation, including body mass, surface area-to mass ratio, sweat rate, and menstrual cycle phase are gender-discrete variables with the potential to alter the exercise-thermoregulatory response to different environments, fluid intake, and exercise metabolism. However, these gender differences appear to be more quantitative than qualitative for most marathon road racing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hensel H. Neural processes in thermoregulation. Physiol Rev 1973; 53: 948–1017

    Google Scholar 

  2. Adams WC, Fox RH, Fry AJ, et al. Thermoregulation during marathon running in cold, moderate, and hot environments. J Appl Physiol 1975; 38 (6): 1030–7

    PubMed  CAS  Google Scholar 

  3. Armstrong LE, Hubbard RW, Jones BH, et al. Preparing Alberto Salazar for the heat of the 1984 Olympic Marathon. Phys Sportsmed 1986; 14 (3): 73–81

    Google Scholar 

  4. Beckner GL, Winsor T. Cardiovascular adaptations to prolonged physical effort. Circulation 1954; 9: 835–46

    Article  PubMed  CAS  Google Scholar 

  5. Buskirk ER, Beetham WP. Dehydration and body temperature as a result of marathon running. Med Sport 1960; 14: 493–506

    Google Scholar 

  6. Cade R, Packer D, Zauner D, et al. Marathon running: physiological and chemical changes accompanying late-race functional deterioration. Eur J Appl Physiol 1992; 65 (6): 485–91

    Article  CAS  Google Scholar 

  7. Christensen CL, Ruhling RO. Thermoregulatory responses during a marathon: a case study of a women runner. Br J Sports Med 1980; 14: 131–2

    Article  PubMed  CAS  Google Scholar 

  8. Cohen I, Zimmerman AL. Changes in serum electrolyte levels during marathon running. S Afr Med J 1978; 53: 449–53

    PubMed  CAS  Google Scholar 

  9. Kavanagh T, Shephard RJ. On the choice of fluid for the hydration of middle-aged marathon runners. Br J Sports Med 1977; 11 (1): 26–35

    Article  PubMed  CAS  Google Scholar 

  10. Kavanagh T, Shephard RH, Pandit V. Marathon running after myocardial infarction. JAMA 1974; 229 (12): 1602–5

    Article  PubMed  CAS  Google Scholar 

  11. Magazanik A, Shapiro Y, Meytes D, et al. Enzyme blood levels and water balance during a marathon race. J Appl Physiol 1974; 36 (2): 214–7

    PubMed  CAS  Google Scholar 

  12. Maron MB, Wagner JA, Horvath SM. Thermoregulatory responses during competitive marathon running. J Appl Physiol 1977; 42 (6): 909–14

    PubMed  CAS  Google Scholar 

  13. Maron MB, Horvath SM, Wilkerson JE, et al. Oxygen uptake measurements during competitive marathon running. J Appl Physiol 1976; 40 (5): 836–8

    PubMed  CAS  Google Scholar 

  14. Maron MB, Horvath SM, Wilkerson JE. Acute blood biochemical alterations in response to marathon running. Eur J Appl Physiol 1975; 34: 173–81

    Article  CAS  Google Scholar 

  15. Maughan RJ. Thermoregulation in marathon competition at low ambient temperature. Int J Sports Med 1985; 6: 15–9

    Article  PubMed  CAS  Google Scholar 

  16. Maughan RJ, Leiper JB, Thompson J. Rectal temperature after marathon running. Br J Sports Med 1985; 19 (4): 192–6

    Article  PubMed  CAS  Google Scholar 

  17. Maughan RJ, Whiting PH, Davidson RJL. Estimation of plasma volume changes during marathon running. Br J Sports Med 1985; 19 (3): 138–41

    Article  PubMed  CAS  Google Scholar 

  18. Muir AL, Davidson IA, Percy-Robb IW, et al. Physiological aspects of the Edinburgh Commonwealth Games. Lancet 1972; II: 1125–8

    Google Scholar 

  19. Myhre LG, Hartung H, Nunneley SA, et al. Plasma volume changes inmiddle-aged male and female subjects during marathon running. J Appl Physiol 1985; 59 (2): 559–63

    PubMed  CAS  Google Scholar 

  20. Myhre LG, Hartung GH, Tucker DM. Plasma volume and blood metabolites in middle-aged runners during a warm-weather marathon. Eur J Appl Physiol 1982; 48: 227–40

    Article  CAS  Google Scholar 

  21. Nelson PB, Ellis D, Fu F, et al. Fluid and electrolyte balance during a cool weather marathon. Am J Sports Med 1989; 17 (6): 770–2

    Article  PubMed  CAS  Google Scholar 

  22. Noakes TD, Myburgh KH, Du Pleiss J, et al. Metabolic rate, not percent dehydration, predicts rectal temperature in marathon runners. Med Sci Sports Exerc 1991; 23 (4): 443–9

    PubMed  CAS  Google Scholar 

  23. Noakes TD, Adams BA, Myburgh KH, et al. The danger of an inadequate water intake during prolonged exercise: a novel concept revisited. Eur J Appl Physiol 1988; 57: 210–9

    Article  CAS  Google Scholar 

  24. Pastene J, Germain M, Allevard AM, et al. Water balance during and after marathon running. Eur J Appl Physiol 1996; 73 (1–2): 49–55

    Article  CAS  Google Scholar 

  25. Pugh LGCE, Corbett JL, Johnson RH. Rectal temperatures, weight loss, and sweat rates in marathon running. J Appl Physiol 1967; 23 (3): 347–52

    PubMed  CAS  Google Scholar 

  26. Rehrer NJ, Janssen GME, Brouns F, et al. Fluid intake and gastrointestinal problems in runners competing in a 25km race and a marathon. Int J Sports Med 1989; 10: 522–5

    Article  Google Scholar 

  27. Riley WJ, Pyke FS, Roberts AD, et al. The effect of long-distance running on some biochemical variables. Clin Chim Acta 1975; 65: 83–9

    Article  PubMed  CAS  Google Scholar 

  28. Tsintzas OK, Williams C, Singh R, et al. Influence of carbohydrate- electrolyte drinks on marathon running performance. Eur J Appl Physiol 1995; 70 (2): 154–60

    Article  CAS  Google Scholar 

  29. Wells CL, Stern JR, Hecht LH. Hematological changes following a marathon race in male and female runners. Eur J Appl Physiol 1982; 48: 41–9

    Article  CAS  Google Scholar 

  30. Whiting PH, Maughan RJ, Miller JDB. Dehydration and serum biochemical changes inmarathon runners. Eur J Appl Physiol 1984; 52: 183–7

    Article  CAS  Google Scholar 

  31. Millard-Stafford M, Sparling PB, Rosskopf LB, et al. Fluid intake in male and female runners during a 40-km field run in the heat. J Sports Sci 1995; 13: 257–63

    Article  PubMed  CAS  Google Scholar 

  32. Millard-Stafford ML, Sparling PB, Rosskopf LB, et al. Carbohydrate- electrolyte replacement improves distance running performance in the heat. Med Sci Sports Exerc 1992; 24 (8): 934–40

    PubMed  CAS  Google Scholar 

  33. Wells CL, Schrader TA, Stern JR, et al. Physiological responses to a 20-mile run under three fluid replacement treatments. Med Sci Sports Exerc 1985; 17 (3): 364–9

    PubMed  CAS  Google Scholar 

  34. Wyndham CH, Strydom NB. The danger of an inadequate water intake during marathon running. S Afr Med J 1969; 43: 893–6

    PubMed  CAS  Google Scholar 

  35. Cheuvront SN, Haymes EM. Ad libitum fluid intakes and thermoregulatory responses of female distance runners in three environments. J Sports Sci. In press

  36. Havenith G, Coenen JML, Kistemaker L, et al. Relevance of individual characteristics for human heat stress response is dependent on exercise intensity and climate type. Eur J Appl Physiol 1998; 77: 231–41

    Article  CAS  Google Scholar 

  37. Suping Z, Guanglin M, Yanwen W, et al. Study of the relationships between weather conditions and the marathon race, and of meteorotropic effects on distance runners. Int J Biometeorol 1992; 36: 63–8

    Article  Google Scholar 

  38. Trapasso LM, Cooper JD. Record performances at the Boston marathon: biometeorological factors. Int J Biometeorol 1989; 33: 233–7

    Article  PubMed  CAS  Google Scholar 

  39. Galloway SDR, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 1997; 29 (9): 1240–9

    Article  PubMed  CAS  Google Scholar 

  40. Pitsiladis YP, Maughan RJ. The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol 1999; 517 (3): 919–30

    Article  PubMed  CAS  Google Scholar 

  41. Nielsen B. Olympics in Atlanta: a fight against physics. Med Sci Sports Exerc 1996; 28 (6): 665–8

    Article  PubMed  CAS  Google Scholar 

  42. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992; 73 (4): 1340–50

    PubMed  CAS  Google Scholar 

  43. Haymes EM. Physiological responses of female athletes to heat stress: a review. Phys Sports Med 1984; 12: 45–9

    Google Scholar 

  44. Nielsen B, Nielsen M. Body temperature during work at different environmental temperatures. Acta Physiol Scand 1962; 56: 120–9

    Article  PubMed  CAS  Google Scholar 

  45. Lind AR. A physiological criterion for setting thermal environmental limits for everyday work. J Appl Physiol 1963; 18 (1): 51–6

    PubMed  CAS  Google Scholar 

  46. American College of Sports Medicine. Position stand on heat and cold illnesses during distance running. Med Sci Sports Exerc 1996; 28 (12): i-x

    Google Scholar 

  47. Nadel ER, Bullard RW, Stolwijk JAJ. Importance of skin temperature in the regulation of sweating. J Appl Physiol 1971; 31: 80–7

    PubMed  CAS  Google Scholar 

  48. Nadel ER, Cafarelli E, Roberts MF, et al. Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol 1979; 46: 430–7

    PubMed  CAS  Google Scholar 

  49. Wyss CR, Brengelmann GL, Johnson JM, et al. Control of skin blood flow, sweating, and heart rate: role of skin vs. core temperature. J Appl Physiol 1974; 36: 726–33

    PubMed  CAS  Google Scholar 

  50. Nadel ER. Control of sweating rate while exercising in the heat. Med Sci Sports Exerc 1979; 11 (1): 31–5

    CAS  Google Scholar 

  51. Brengelmann GL, Johnson JM, Hermansen L, et al. Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol 1977; 43: 790–4

    PubMed  CAS  Google Scholar 

  52. Gonzalez-Alonzo J, Mora-Rodriguez R, Below PR, et al. Dehydration reduces cardiac output and increase systemic and cutaneous vascular resistance during exercise. J Appl Physiol 1995; 79 (5): 1487–96

    Google Scholar 

  53. Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, et al. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol 1997; 82 (4): 1229–36

    PubMed  CAS  Google Scholar 

  54. Hamilton MT, Gonzalez-Alonzo J, Montain SJ, et al. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol 1991; 71 (3): 871–7

    PubMed  CAS  Google Scholar 

  55. Snellen JW, Mitchell D, Wyndham CH. Heat of evaporation of sweat. J Appl Physiol 1970; 29 (1): 40–4

    PubMed  CAS  Google Scholar 

  56. Dennis SC, Noakes TD. Advantages of a smaller bodymass in humans when distance-running in warm, humid conditions. Eur J Appl Physiol 1999; 79: 280–4

    Article  CAS  Google Scholar 

  57. Kenney WL. Heat flux and storage in hot environments. Int J Sports Med 1998; 19 Suppl. 2: S92-S95

    Article  Google Scholar 

  58. Verdaguer-Codina J, Martin DE, Pujol-Amat P, et al. Climatic heat stress studies at the Barcelona Olympic Games, 1992. Sports Med Train Rehabil 1995; 6: 167–92

    Article  Google Scholar 

  59. Montain SJ, Sawka MN, Cadarette BS et al. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol 1994; 77: 216–22

    PubMed  CAS  Google Scholar 

  60. Gonzale-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 1999; 86 (3): 1032–9

    Google Scholar 

  61. Nielsen B, Kassow K, Aschengreen FE. Heat balance during exercise in the sun. Eur J Appl Physiol 1988; 58: 189–96

    Article  CAS  Google Scholar 

  62. New York Road Runner’s Club, Inc. New York City Marathon media guide. New York (NY): Organizers and Producers of the NYC Marathon®, 1998

    Google Scholar 

  63. Adner MM, Scarlet JJ, Casey J, et al. The Boston Marathon medical care team: ten years of experience. Physician Sports Med 1988; 16 (7): 99–106

    Google Scholar 

  64. Perlmutter EM. The Pittsburgh Marathon: playing weather roulette. Physician Sports Med 1986; 14 (8): 132–8

    Google Scholar 

  65. Jones BH, Rock PB, Smith LS, et al. Medical complaints after a marathon run in cool weather. Physician Sports Med 1985; 13 (10): 103–10

    Google Scholar 

  66. Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sports Sci Rev 1999; 27: 167–218

    CAS  Google Scholar 

  67. Pitts GC, Johnson RE, Consolazio FC. Work in the heat as affected by intake of water, salt and glucose. Am J Physiol 1944; 142: 253–9

    CAS  Google Scholar 

  68. Costill DL, Kammer WF, Fisher A. Fluid ingestion during distance running. Arch Environ Health 1970; 21: 520–5

    PubMed  CAS  Google Scholar 

  69. Gisolfi CV, Copping JR. Thermal effects of prolonged treadmill exercise in the heat. Med Sci Sports Exerc 1974; 6 (2): 108–13

    CAS  Google Scholar 

  70. Montain SJ, Coyle EF. Fluid ingestion during exercise increases skin blood flow independent of blood volume. J Appl Physiol 1992; 73 (3): 903–10

    PubMed  CAS  Google Scholar 

  71. Sawka MN. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 1992; 24 (6): 657–70

    PubMed  CAS  Google Scholar 

  72. Kolka MA, Stephenson LA, Wilkerson JE. Erythrocyte indices during a competitive marathon. J Appl Physiol 1982; 52: 168–72

    PubMed  CAS  Google Scholar 

  73. Sawka MN, Knowlton RG, Glaser RM. Body temperature, respiration, and acid-base equilibrium during prolonged running. Med Sci Sports 1980; 12: 370–4

    CAS  Google Scholar 

  74. Harrison MH. Effects of thermal stress and exercise on blood volume in humans. Physiol Rev 1985; 65: 149–209

    PubMed  CAS  Google Scholar 

  75. Costill DL, Saltin B. Factors limiting gastric emptying during rest and exercise. J Appl Physiol 1974; 37 (5): 679–83

    PubMed  CAS  Google Scholar 

  76. Neufer PD, Young AJ, Sawka MN. Gastric emptying during walking and running: effects of varied exercise intensity. Eur J Appl Physiol 1989; 58: 440–5

    Article  CAS  Google Scholar 

  77. American College of Sports Medicine. Position stand on exercise and fluid replacement. Med Sci Sports Exerc 1996; 28 (1): I-VII

    Article  Google Scholar 

  78. Consolazio FC, Johnson RE, Pecora LJ. Physiological measurements of metabolic functions in man. New York (NY): McGraw-Hill, 1963

    Google Scholar 

  79. Mitchell JM, Nadel ER, Stolwijk JAJ. Respiratory weight loss during exercise. J Appl Physiol 1972; 32: 474–6

    PubMed  CAS  Google Scholar 

  80. Pivarnik JM, Leeds EM, Wilkerson JE. Effects of endurance exercise on metabolic water production and plasma volume. J Appl Physiol 1984; 56: 613–8

    PubMed  CAS  Google Scholar 

  81. Olsson K-E, Saltin B. Variations in total body water with muscle glycogen changes in man. Acta Physiol Scand 1970; 80: 11–8

    Article  PubMed  CAS  Google Scholar 

  82. Costill DL, Cote R, Fink W, et al. Muscle water and electrolyte distribution during prolonged exercise. Int J Sports Med 1981; 2: 130–4

    Article  PubMed  CAS  Google Scholar 

  83. Margaria R, Ceretelli P, Aghems P. Energy cost of running. J Appl Physiol 1963; 18: 367–70

    PubMed  CAS  Google Scholar 

  84. Gonzalez-Alonso J, Quistorff B, Krustrup P, et al. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 2000; 524: 603–15

    Article  PubMed  CAS  Google Scholar 

  85. Gonzalez-Alonso J, Calbet JA, Nielsen B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol 1999; 520: 577–89

    Article  PubMed  CAS  Google Scholar 

  86. Burton AC. Human calorimetry II: the average temperature of the tissues of the body. J Nutr 1935; 9: 261–80

    CAS  Google Scholar 

  87. Taylor CR, Heglund NC, McMahon TA, et al. Energetic cost of generating muscular force during running. J Exp Biol 1980; 86: 9–18

    Google Scholar 

  88. Kram R. Muscular force or work: what determines the metabolic energy cost of running? Exerc Sports Sci Rev 2000; 28 (3): 138–43

    CAS  Google Scholar 

  89. McMahon TA. Muscles, reflexes, and locomotion. Princeton (NJ): Princeton University Press, 1984

    Google Scholar 

  90. Kushmerick MJ, Davies RE. The chemical energetics of muscle contraction: II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc R Soc London 1969; 1174: 315–53

    Article  Google Scholar 

  91. Davies CTM. Thermoregulation during exercise in relation to sex and age. Eur J Appl Physiol 1979; 42: 71–9

    Article  CAS  Google Scholar 

  92. Saltin B, Hermansen L. Esophageal, rectal, and muscle temperatures during exercise. J Appl Physiol 1966; 21: 1757–62

    PubMed  CAS  Google Scholar 

  93. Costill DL. Metabolic responses during distance running. J Appl Physiol 1970; 28 (3): 251–5

    PubMed  CAS  Google Scholar 

  94. Maughan RJ, Leiper JB. Aerobic capacity and fractional utilization of aerobic capacity in elite and non-elite male and female marathon runners. Eur J Appl Physiol 1983; 52: 80–7

    Article  CAS  Google Scholar 

  95. Fox EL, Costill DL. Estimated cardiorespiratory responses during marathon running. Arch Environ Health 1972; 24: 316–24

    PubMed  CAS  Google Scholar 

  96. Maughan RJ. Temperature regulation during marathon competition. Br J Sports Med 1984; 18 (4): 257–60

    Article  PubMed  CAS  Google Scholar 

  97. American College of Sports Medicine. Opinion statement on the participation of female athletes in long-distance running. Med Sci Sports 1979; 11: IX-XI

    Google Scholar 

  98. Kuscsik N. The history of women’s participation in the marathon. Ann Am Acad Sci 1977; 301: 862–76

    Article  Google Scholar 

  99. Fleming J. The 102 B.A.A. marathon racer’s record book. Boston (MA): Phoenix Medical Group, 1998

    Google Scholar 

  100. Haymes EM, Cartee GD, Rape SM, et al. Thermal and metabolic responses of men and women during exercise in cold and neutral environments [abstract]. Med Sci Sports Exerc 1982; 14: 126

    Google Scholar 

  101. Haymes EM. Temperature and exercise. In: Puhl J, Brown CH, Voy RD, editors. Sports science perspectives for women. Champaign (IL): Human Kinetics, 1988: 37–47

    Google Scholar 

  102. Bar-Or O, Lundegren HM, Magnusson LI, et al. Distribution of heat activated sweat glands in obese and lean men and women. Hum Biol 1968; 40: 235–48

    PubMed  CAS  Google Scholar 

  103. Brown WK, Sargent F. Hidromeiosis. Arch Environ Health 1965; 11: 442–53

    PubMed  CAS  Google Scholar 

  104. Avellini BA, Kamon E, Krajewski JT. Physiological responses of physically fit men and women to acclimation to humid heat. J Appl Physiol 1980; 49: 254–61

    PubMed  CAS  Google Scholar 

  105. Frye AJ, Kamon E. Sweating efficiency in acclimated men and women exercising in the humid and dry heat. J Appl Physiol 1983; 54: 972–7

    PubMed  CAS  Google Scholar 

  106. Lewis DA, Kamon E, Hodgson JL. Physiological differences between genders: implications for sports conditioning. Sports Med 1986; 3 (5): 357–69

    Article  PubMed  CAS  Google Scholar 

  107. Nunneley SA. Physiological responses of women to thermal stress. Med Sci Sports 1978; 10: 250–5

    PubMed  CAS  Google Scholar 

  108. Costill DL, Bowers R, Kammer WF. Skin fold estimates of body fat among marathon runners. Med Sci Sports Exerc 1970; 2: 93–5

    CAS  Google Scholar 

  109. Wilmore JH, Brown H. Physiological profiles of women distance runners. Med Sci Sports Exerc 1974; 6 (3): 178–81

    CAS  Google Scholar 

  110. Wells CL, Hecht LH, Krahenbuhl GS. Physical characteristics and oxygen utilization of male and female marathon runners. Res Q Exerc Sport 1981; 52 (2): 281–5

    PubMed  CAS  Google Scholar 

  111. Christensen CL, Ruhling RO. Physical characteristics of novice and experienced women marathon runners. Br J Sports Med 1983; 17 (3): 166–71

    Article  PubMed  CAS  Google Scholar 

  112. Carpenter AJ, Nunneley SA. Endogenous hormones subtly alter women’s response to heat stress. J Appl Physiol 1988; 65: 2313–7

    PubMed  CAS  Google Scholar 

  113. Kolka MA, Stephenson LA. Control of sweating during the human menstrual cycle. Eur J Appl Physiol 1989; 58: 890–5

    Article  CAS  Google Scholar 

  114. Stephenson LA, Kolka MA. Menstrual cycle phase and time of day alter reference signal controlling arm blood flow and sweating. Am J Physiol 1985; 249 (2 Pt 2): R186-R191

    Google Scholar 

  115. Stephenson LA, Kolka MA. Esophageal temperature threshold for sweating decreases before ovulation in premenopausal women. J Appl Physiol 1999; 86 (1): 22–8

    PubMed  CAS  Google Scholar 

  116. Crown WH. Statistical models for the social and behavioral sciences: multiple regression and limited-dependent variable models. Westport (CT): Praeger Publishers, 1998

    Google Scholar 

  117. Sjodin B, Svedenhag J. Applied physiology of marathon running. Sports Med 1985; 2 (2): 83–9

    Article  PubMed  CAS  Google Scholar 

  118. Costill DL. Physiology of marathon running. JAMA 1972; 221 (9): 1024–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily M. Haymes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheuvront, S.N., Haymes, E.M. Thermoregulation and Marathon Running. Sports Med 31, 743–762 (2001). https://doi.org/10.2165/00007256-200131100-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131100-00004

Keywords

Navigation