Skip to main content
Log in

Respiratory Muscle Training in Healthy Individuals

Physiological Rationale and Implications for Exercise Performance

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The respiratory system has traditionally been viewed to be capable of meeting the substantial demands for ventilation and gas exchange and the cardiopulmonary interactions imposed by short-term maximum exercise or long-term endurance exercise. Recent studies suggest that specific respiratory muscle (RM) training can improve the endurance and strength of the respiratory muscles in healthy humans. The effects of RM training on exercise performance remains controversial. When whole-body exercise performance is evaluated using submaximal fixed work-rate tests, significant improvements are seen and smaller, but significant improvements have also been reported in placebo-trained individuals. When performance is measured using time-trial type performance measures versus fixed workload tests, performance is increased to a much lesser extent with RM training. It appears that RM training influences relevant measures of physical performance to a limited extent at most. Interpretation of the collective literature is difficult because most studies have utilised relatively small sample sizes and very few studies have used appropriate control or placebo groups. Mechanisms to explain the purported improvements in exercise performance remain largely unknown. However, possible candidates include improved ratings of breathing perception, delay of respiratory muscle fatigue, ventilatory efficiency, or blood flow competition between respiratory and locomotor muscles. This review summarises the current literature on the physiology of RM training in healthy ically evaluates the possible implications for exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Bye PTP, Esau SA, Walley KR, et al. Ventilatory muscles during exercise in air and oxygen in normal men. J Appl Physiol 1984; 56: 464–71

    PubMed  CAS  Google Scholar 

  2. Johnson BD, Babcock MA, Suman OE, et al. Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 1993; 460: 385–405

    PubMed  CAS  Google Scholar 

  3. Dempsey JA, Adams L, Ainsworth DM, et al. Airway, lung, and respiratory function during exercise. In: Rowell LB, Shepherd JT, editors. Exercise: regulation and integration of multiple systems. New York (NY): Oxford University Press, 1996: 448–514

    Google Scholar 

  4. Henke KG, Sharratt M, Pegelow D, et al. Regulation of end-expiratory lung volume during exercise. J Appl Physiol 1988; 64 (1): 135–46

    PubMed  CAS  Google Scholar 

  5. Dempsey JA, Forster HV, Ainsworth DM. Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI, editors. Regulation of breathing. New York (NY): Marcel Dekker, 1995: 1065–134

    Google Scholar 

  6. Aaron EA, Seow KC, Johnson BD, et al. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 1992; 72: 1818–25

    PubMed  CAS  Google Scholar 

  7. Harms CA, Wetter TJ, McClaran SR, et al. Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J Appl Physiol 1998; 85: 609–18

    PubMed  CAS  Google Scholar 

  8. Manohar M. Blood flow to the respiratory and limb muscles and to abdominal organs during exertion in ponies. J Physiol 1986; 377: 25–35

    PubMed  CAS  Google Scholar 

  9. Musch TI, Friedman DB, Pitetti KH, et al. Regional distribution of blood flow of dogs during graded dynamic exercise. J Appl Physiol 1987; 63 (6): 2269–77

    PubMed  CAS  Google Scholar 

  10. Manohar M. Costal vs crural diaphragmatic blood flow during submaximal and near-maximal exercise in ponies. J Appl Physiol 1988; 65 (4): 1514–9

    PubMed  CAS  Google Scholar 

  11. Manohar M, Hassan AS. Diaphragm does not produce ammonia or lactate during high-intensity short-term exercise. Am J Physiol 1990; 259 (4 Pt 2): H1185–9

    Google Scholar 

  12. Fixler DE, Atkins JM, Mitchell JH, et al. Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise. Am J Physiol 1976; 231 (5 Pt 1): 1515–9

    PubMed  CAS  Google Scholar 

  13. Babcock MA, Pegelow DF, McLaran SR, et al. Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol 1995; 78: 1710–9

    PubMed  CAS  Google Scholar 

  14. Harms CA, Babcock MA, McClaran SR, et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 1997; 82 (5): 1573–83

    PubMed  CAS  Google Scholar 

  15. Wetter TJ, Harms CA, Nelson WB, et al. Influence of respiratory muscle work on V̇2 and leg blood flow during submaximal exercise. J Appl Physiol 1999; 87 (2): 643–51

    PubMed  CAS  Google Scholar 

  16. Sheel AW, Derchak PA, Morgan BJ, et al. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow. J Physiol (Lond) 2001; 537 (1): 277–289

    Article  CAS  Google Scholar 

  17. St Croix CM, Morgan BJ, Wetter TJ, et al. Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J Physiol 2000; 529 Pt 2: 493–504

    Article  PubMed  CAS  Google Scholar 

  18. Dempsey JA, Sheel AW, St Croix CM, et al. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol 2002; 130: 3–20

    Article  PubMed  Google Scholar 

  19. Harms CA, Wetter TJ, St Croix CM, et al. Effects of respiratory muscle work on exercise performance. J Appl Physiol 2000; 89 (1): 131–8

    PubMed  CAS  Google Scholar 

  20. Sliwinski P, Yan S, Gauthier AP, et al. Influence of global inspiratory muscle fatigue on breathing during exercise. J Appl Physiol 1996; 80: 1270–8

    PubMed  CAS  Google Scholar 

  21. Krishnan B, Zintel T, McParland C, et al. Lack of importance of respiratory muscle load in ventilatory regulation during heavy exercise in humans. J Appl Physiol 1996; 490: 537–50

    CAS  Google Scholar 

  22. Gallagher CG, Younes M. Effect of pressure assist on ventilation and respiratory mechanics in heavy exercise. J Appl Physiol 1989; 66: 1824–37

    PubMed  CAS  Google Scholar 

  23. McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition, and human performance. 5th ed. Baltimore (MD): Lippincott, Williams and Wilkins, 2001

    Google Scholar 

  24. Booth FW, Baldwin BJ. Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT, editors. Exercise: regulation and integration of multiple systems. New York (NY): Oxford University Press, 1996: 1075–123

    Google Scholar 

  25. Metzger JM, Fitts RH. Contractile and biochemical properties of diaphragm: effects of exercise training and fatigue. J Appl Physiol 1986; 60 (5): 1752–8

    PubMed  CAS  Google Scholar 

  26. Gosselin LE, Betlach M, Vailas AC, et al. Training-induced alterations in young and senescent rat diaphragm muscle. J Appl Physiol 1992; 72 (4): 1506–11

    PubMed  CAS  Google Scholar 

  27. Grinton S, Powers SK, Lawler J, et al. Endurance training-induced increases in expiratory muscle oxidative capacity. Med Sci Sports Exerc 1992; 24 (5): 551–5

    PubMed  CAS  Google Scholar 

  28. Ianuzzo CD, Noble EG, Hamilton N, et al. Effects of streptozotocin diabetes, insulin treatment, and training on the diaphragm. J Appl Physiol 1982; 52 (6): 1471–5

    PubMed  CAS  Google Scholar 

  29. Powers SK, Criswell D, Lawler J, et al. Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes. Respir Physiol 1994; 95 (2): 227–37

    Article  PubMed  CAS  Google Scholar 

  30. Powers SK, Criswell D, Lieu FK, et al. Exercise-induced cellular alterations in the diaphragm. Am J Physiol 1992; 263 (5 Pt 2): R1093–8

    Google Scholar 

  31. Powers SK, Lawler J, Criswell D, et al. Aging and respiratory muscle metabolic plasticity: effects of endurance training. J Appl Physiol 1992; 72 (3): 1068–73

    PubMed  CAS  Google Scholar 

  32. Powers SK, Grinton S, Lawler J, et al. High-intensity exercise training-induced metabolic alterations in respiratory muscles. Respir Physiol 1992; 89 (2): 169–77

    Article  PubMed  CAS  Google Scholar 

  33. Powers SK, Lawler J, Criswell D, et al. Endurance-training induced cellular adaptations in respiratory muscles. J Appl Physiol 1990; 68 (5): 2114–8

    PubMed  CAS  Google Scholar 

  34. Sugiura T, Morimoto A, Murakami N. Effects of endurance training on myosin heavy-chain isoforms and enzyme activity in the rat diaphragm. Pflugers Arch 1992; 421 (1): 77–81

    Article  PubMed  CAS  Google Scholar 

  35. Vrabas IS, Dodd SL, Powers SK, et al. Endurance training reduces the rate of diaphragm fatigue in vitro. Med Sci Sports Exerc 1999; 31 (11): 1605–12

    Article  PubMed  CAS  Google Scholar 

  36. Clanton TL, Dixon GF, Drake J, et al. Effects of swim training on lung volumes and inspiratory muscle conditioning. J Appl Physiol 1987; 62 (1): 39–46

    PubMed  CAS  Google Scholar 

  37. O’Kroy JA, Coast JR. Effects of flow and resistive training on respiratory muscle endurance and strength. Respiration 1993; 60 (5): 279–83

    Article  PubMed  Google Scholar 

  38. Robinson EP, Kjeldgaard JM. Improvement in ventilatory muscle function with running. J Appl Physiol 1982; 52 (6): 1400–6

    PubMed  CAS  Google Scholar 

  39. Martin BJ, Stager JM. Ventilatory endurance in athletes and non-athletes. Med Sci Sports Exerc 1981; 13 (1): 21–6

    PubMed  CAS  Google Scholar 

  40. Coast JR, Clifford PS, Henrich TW, et al. Maximal inspiratory pressure following maximal exercise in trained and untrained subjects. Med Sci Sports Exerc 1990; 22 (6): 811–5

    PubMed  CAS  Google Scholar 

  41. Thomas RG, LaStayo PC, Hoppeler H, et al. Exercise training in chronic hypoxia has no effect on ventilatory muscle function in humans. Respir Physiol 1998; 112 (2): 195–202

    Article  PubMed  CAS  Google Scholar 

  42. Sonetti DA, Wetter TJ, Pegelow DF, et al. Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol 2001; 127 (2–3): 185–99

    Article  PubMed  CAS  Google Scholar 

  43. Spengler CM, Roos M, Laube SM, et al. Decreased exercise blood lactate concentrations after respiratory endurance training in humans. Eur J Appl Physiol Occup Physiol 1999; 79 (4): 299–305

    Article  PubMed  CAS  Google Scholar 

  44. Leith DE, Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol 1976; 41 (4): 508–16

    PubMed  CAS  Google Scholar 

  45. Morgan D, Kohrt W, Bates B, et al. Effects of respiratory muscle endurance training on ventilatory and endurance performance of moderately trained cyclists. Int J Sports Med 1987; 8: 88–93

    Article  PubMed  CAS  Google Scholar 

  46. Hanel B, Secher NH. Maximal oxygen uptake and work capacity after inspiratory muscle training: a controlled study. J Sports Sci 1991; 9 (1): 43–52

    Article  PubMed  CAS  Google Scholar 

  47. Fairbarn MS, Coutts KC, Pardy RL, et al. Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal exercise performance. Int J Sports Med 1991; 12 (1): 66–70

    Article  PubMed  CAS  Google Scholar 

  48. Boutellier U, Piwko P. The respiratory system as an exercise limiting factor in normal sedentary subjects. Eur J Appl Physiol 1992; 64: 145–52

    Article  CAS  Google Scholar 

  49. Boutellier U, Buchel R, Kundert A, et al. The respiratory system as an exercise limiting factor in normal trained subjects. Eur J Appl Physiol Occup Physiol 1992; 65 (4): 347–53

    Article  PubMed  CAS  Google Scholar 

  50. Suzuki S, Yoshiike Y, Suzuki M, et al. Inspiratory muscle training and respiratory sensation during treadmill exercise. Chest 1993; 104 (1): 197–202

    Article  PubMed  CAS  Google Scholar 

  51. Inbar O, Weiner P, Azgad Y, et al. Specific inspiratory muscle training in well-trained endurance athletes. Med Sci Sports Exerc 2000; 32 (7): 1233–7

    Article  PubMed  CAS  Google Scholar 

  52. Stuessi C, Spengler CM, Knopfli-Lenzin C, et al. Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentrations. Eur J Appl Physiol 2001; 84 (6): 582–6

    Article  PubMed  CAS  Google Scholar 

  53. Volianitis S, McConnell AK, Koutedakis Y, et al. Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 2001; 33 (5): 803–9

    PubMed  CAS  Google Scholar 

  54. Markov G, Spengler CM, Knopfli-Lenzin C, et al. Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur J Appl Physiol 2001; 85 (3–4): 233–9

    Article  PubMed  CAS  Google Scholar 

  55. Billat V, Renoux JC, Pinoteau J, et al. Reproducibility of running time to exhaustion at V̇2max in subelite runners. Med Sci Sports Exerc 1994; 26 (2): 254–7

    Article  PubMed  CAS  Google Scholar 

  56. Coggan AR, Costill DL. Biological and technological variability of three anaerobic ergometer tests. Int J Sports Med 1984; 5 (3): 142–5

    Article  PubMed  CAS  Google Scholar 

  57. Jeukendrup A, Saris WH, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc 1996; 28 (2): 266–70

    Article  PubMed  CAS  Google Scholar 

  58. Kuipers H, Verstappen FT, Keizer HA, et al. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 1985; 6 (4): 197–201

    Article  PubMed  CAS  Google Scholar 

  59. McLellan TM, Cheung SS, Jacobs I. Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol 1995; 20 (1): 39–51

    Article  PubMed  CAS  Google Scholar 

  60. Bishop D. Reliability of a 1-h endurance performance test in trained female cyclists. Med Sci Sports Exerc 1997; 29 (4): 554–9

    Article  PubMed  CAS  Google Scholar 

  61. Hickey MS, Costill DL, McConell GK, et al. Day to day variation in time trial cycling performance. Int J Sports Med 1992; 13 (6): 467–70

    Article  PubMed  CAS  Google Scholar 

  62. Palmer GS, Dennis SC, Noakes TD, et al. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 1996; 17 (4): 293–8

    Article  PubMed  CAS  Google Scholar 

  63. Schabort EJ, Hawley JA, Hopkins WG, et al. High reliability of performance ofwell-trained rowers on a rowing ergometer. J Sports Sci 1999; 17 (8): 627–32

    Article  PubMed  CAS  Google Scholar 

  64. Schabort EJ, Hawley JA, Hopkins WG, et al. A new reliable laboratory test of endurance performance for road cyclists. Med Sci Sports Exerc 1998; 30 (12): 1744–50

    Article  PubMed  CAS  Google Scholar 

  65. Decramer M, Macklem PT. Pressures developed by the respiratory muscles. In: Roussos C, editor. The thorax. New York (NY): Marcel Dekker, 1995: 1099–126

    Google Scholar 

  66. Harms CA, Dempsey JA. Cardiovascular consequences of exercise hyperpnea. Exercise Sport Sci Rev 1999; 27: 37–62

    Article  CAS  Google Scholar 

  67. Killian KJ, Campbell EJM. Dypsnea. In: Roussos C, editor. The thorax. New York (NY): Marcel Dekker, 1995: 1709–47

    Google Scholar 

Download references

Acknowledgements

The author received no funding for the prepartion of this article and has no conflicts of interest relavant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. William Sheel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheel, A.W. Respiratory Muscle Training in Healthy Individuals. Sports Med 32, 567–581 (2002). https://doi.org/10.2165/00007256-200232090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200232090-00003

Keywords

Navigation