Skip to main content

Advertisement

Log in

Meniscal and Chondral Loss in the Anterior Cruciate Ligament Injured Knee

  • Injury Clinic
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Rupture of the anterior cruciate ligament (ACL) of the knee is a commonly occurring injury in the athletic population. Associated meniscal and chondral injury is well recognised. This occurs both at the time of index injury and also secondarily over time in the ACL-deficient knee as a result of several related pathways culminating in osteoarthritis. ACL reconstruction is a well established surgical technique for treatment of symptomatic instability in ACL-deficient knees but the role of ACL reconstruction in the prevention of osteoarthritis remains unclear.

This article reviews the contemporary literature on the pathophysiology of chondral and meniscal loss in ACL-injured knees and the role of current treatment techniques, including surgical reconstruction of ligamentous, meniscal and chondral pathology, in altering the natural history of the ACL-deficient knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Funk FJ. Osteoarthritis of the knee following ligamentous injury. Clin Orthop 1983; 172: 154–7

    PubMed  Google Scholar 

  2. Cerabona F, Sherman MF, Bonamo JR, et al. Patterns of meniscal injury with acute anterior cruciate ligament rupture. Am J Sports Med 1988; 16: 603–9

    Article  PubMed  CAS  Google Scholar 

  3. Hawkins RJ, Misamore GW, Merritt TR. Follow-up of the acute nonoperated isolated anterior cruciate ligament tear. Am J Sports Med 1986; 14: 205–10

    Article  PubMed  CAS  Google Scholar 

  4. Kannus P, Jarvinen M. Conservatively treated tears of the anterior cruciate ligament: long-term results. J Bone Joint Surg 1987; 69A: 1007–12

    Google Scholar 

  5. Keene GCR, Bickerstaff D, Rae PJ, et al. The natural history of meniscal tears in anterior cruciate ligament insufficiency. Am J Sports Med 1993; 21: 672–9

    Article  PubMed  CAS  Google Scholar 

  6. Noyes FR, Basset RW, Grood ES, et al. Arthroscopy in acute traumatic heamarthrosis of the knee: incidence of anterior cruciate ligament tears and other injuries. J Bone Joint Surg 1980; 62A: 687–95

    Google Scholar 

  7. Smith JP, Barrett GR. Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. Am J Sports Med 2001; 29: 415–9

    PubMed  Google Scholar 

  8. Spindler KP, Schils JP, Bergfeld JA, et al. Prospective study of osseous, articular and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 1993; 21: 551–7

    Article  PubMed  CAS  Google Scholar 

  9. Warren RF, Levy IM. Meniscal lesions associated with anterior cruciate ligament injury. Clin Orthop 1983; 172: 32–7

    PubMed  Google Scholar 

  10. Wickiewicz TL. Meniscal injuries in the cruciate deficient knee. Clinics Sports Med 1990; 9: 681–94

    CAS  Google Scholar 

  11. Murrell GAC, Horovitz L, Oakley SP, et al. The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss. Am J Sports Med 2001; 29: 9–14

    PubMed  CAS  Google Scholar 

  12. Shelbourne KD, Nitz PA. The O’Donoghue triad revisited-combined knee injuries involving anterior cruciate amd medial collateral ligament tears. Am J Sports Med 1991; 19: 474–7

    Article  PubMed  CAS  Google Scholar 

  13. Thompson WO, Fu FH. The meniscus in the cruciate-deficient knee. Clin Sports Med 1993; 12: 771–96

    PubMed  CAS  Google Scholar 

  14. Millet PJ, Willis AA, Warren RF. Associated injuries in pediatric and adolescent ACL tears: does a delay in treatment increases the risk of meniscal tears. Arthroscopy 2002; 18: 955–9

    Article  Google Scholar 

  15. Colby S, Francisco A, Yu B, et al. Electromyographic and kinematic analysis of cutting maneuvers. Am J Sports Med 2000; 28: 234–40

    PubMed  CAS  Google Scholar 

  16. Costa-Paz M, Muscolo DL, Ayerza M, et al. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 2001; 17: 445–9

    Article  PubMed  CAS  Google Scholar 

  17. Johnson DL, Urban WD, Caborn DNM, et al. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruise associated with anterior cruciate ligament tears. Am J Sports Med 1998; 26: 409–15

    PubMed  CAS  Google Scholar 

  18. Mink JH, Deutsch AL. Occult cartilage and bone injuries of the knee: detection, classification and assessment with MRI. Radiology 1989; 170: 823–9

    PubMed  CAS  Google Scholar 

  19. Vellet AD, Marks P, Fowler PJ, et al. Occult post traumatic osteochondral lesions of the knee: prevalence, classification and short term sequelae evaluated with MR imaging. Radiology 1991; 178: 271–6

    PubMed  CAS  Google Scholar 

  20. Allen CR, Wong EK, Livesay GA, et al. The importance of the medial meniscus in the anterior cruciate ligament deficient knee. J Orthop Res 1998; 18: 109–15

    Article  Google Scholar 

  21. Marcus Hollis J, Pearsall AW, Niciforos PG. Change in meniscal strain with anterior cruciate ligament injury and after reconstruction. Am J Sports Med 2000; 28: 700–4

    Google Scholar 

  22. Hughston JC. Knee ligaments: injury and repair. St Louis (MO): Mosby-Year Book, 1993

    Google Scholar 

  23. Indelicato PA, Bittar ES. A perspective of lesions associated with ACL insufficiency of the knee: a review of 100 cases. Clin Orthop 1985; 198: 77–80

    PubMed  Google Scholar 

  24. Irvine GB, Glasgow MM. The natural history of the meniscus in anterior cruciate insufficiency: arthroscopic analysis. J Bone Joint Surg 1992; 74B: 403–5

    Google Scholar 

  25. Bonamo JJ, Fay C, Firestone T. The conservative treatment of the anterior cruciate deficient knee. Am J Sports Med 1990; 18: 618–23

    Article  PubMed  CAS  Google Scholar 

  26. Fetto JF, Marshall JL. The natural history and diagnosis of anterior cruciate ligament insufficiency. Clin Orthop 1980; 147: 29–38

    PubMed  Google Scholar 

  27. Seedhom BB. Loadbearing function of the menisci. Physiotherapy 1976; 62: 223

    PubMed  CAS  Google Scholar 

  28. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop 1975; 109: 184–92

    Article  PubMed  Google Scholar 

  29. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints: part 1. Tibial surface of the knee. J Biomech Eng 1983; 105: 216–25

    Article  PubMed  CAS  Google Scholar 

  30. Brown TD, Shaw DT. In vitro contact stress distribution on the femoral condyles. J Orthop Res 1984; 2: 190–9

    Article  PubMed  CAS  Google Scholar 

  31. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect off meniscectomy and of repair on intraarticular contact areas and stress in the human knee: a preliminary report. Am J Sports Med 1986; 14: 270–5

    Article  PubMed  CAS  Google Scholar 

  32. Cox JS, Cordell LD. The degenerative effects of medial meniscus tears in dogs knees. Clin Orthop 1977; 125: 236–42

    PubMed  Google Scholar 

  33. Szomor ZL, Martin TE, Bonar F, et al. The protective effects of meniscal transplantation on cartilage: an experimental study in sheep. J Bone Joint Surg 2000; 82A: 80–8

    Google Scholar 

  34. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg 1948; 30B: 664–70

    CAS  Google Scholar 

  35. Jorgensen U, Sonne-Holm S, Lauridsen F, et al. Long-term follow-up of menisectomy in athletes: a prospective longitudinal study. J Bone Joint Surg 1987; 69B: 80–3

    Google Scholar 

  36. McNicholas MJ, Rowley DI, McGurty D, et al. Total meniscectomy in adolescence: a thirty-year follow-up. J Bone Joint Surg 2000; 82B: 217–21

    Article  Google Scholar 

  37. Roos H, Lauren M, Adalberth T, et al. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 1998; 41: 687–93

    Article  PubMed  CAS  Google Scholar 

  38. Kurosawa H, Fukubayashi T, Nakajima H. Load bearing model of the knee joint: physical behaviour of the knee with or without menisci. Clin Orthop 1980; 149: 283–90

    PubMed  Google Scholar 

  39. Levy IM, Torzilli P, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg 1982; 64A: 883–8

    Google Scholar 

  40. Drongowski RA, Coran AG, Wojtys EM. Predictive value of meniscal and chondral injuries in conservatively treated ACL injuries. Arthroscopy 1994; 10: 97–102

    Article  PubMed  CAS  Google Scholar 

  41. Lynch MA, Henning CE, Glick Jr KR. Knee joint surface changes: long-term follow-up of meniscal tear treatment in stable anterior cruciate ligament reconstructions. Clin Orthop 1983; 172: 148–53

    PubMed  Google Scholar 

  42. Papageorgiou CD, Gil JE, Kanamori A, et al. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 2001; 29: 226–31

    PubMed  CAS  Google Scholar 

  43. Cannon Jr WD, Vittori JM. The incidence of healing in arthroscopic meniscal repairs in anterior cruciate ligament-reconstructed knee versus stable knees. Am J Sports Med 1992; 20: 176–81

    Article  PubMed  Google Scholar 

  44. De Haven KE, Black KP, Griffiths HJ. Open meniscus repair: technique and two to nine year results. Am J Sports Med 1989; 17: 788–95

    Article  Google Scholar 

  45. Gill SS, Diduch DR. Outcomes after meniscal repair using the meniscal arrows in knees undergoing concurrent ACL reconstructions. Arthroscopy 2002; 18: 569–77

    Article  PubMed  Google Scholar 

  46. Henning CE. Arthroscopic repair of meniscus tears. Orthopaedics 1983; 6: 1130–2

    Google Scholar 

  47. Morgan CD, Wojtys EM, Casscells CD, et al. Arthroscopic meniscal repair evaluated by second look arthroscopy. Am J Sports Med 1991; 19: 632–7

    Article  PubMed  CAS  Google Scholar 

  48. Tenuta JJ, Arciero RA. Arthroscopic evaluation of meniscal repair: factors that affect healing. Am J Sports Med 1994; 22: 197–200

    Article  Google Scholar 

  49. Kliemkiewicz JJ, Shaffer B. Meniscal surgery 2002 update: indications and technique for resection, repair, regeneration and replacement. Arthroscopy 2002; 18 Suppl.: 14–25

    Google Scholar 

  50. Richard KNR, Wiliam HDV, Gwen GM. Meniscal allograft replacement: a 1–6 years experience. Arthroscopy 2002; 18: 989–94

    Article  Google Scholar 

  51. Rodeo SA. Meniscal allografts: where do we stand? Am J Sports Med 2001; 29: 246–61

    PubMed  CAS  Google Scholar 

  52. Van Arkel ERA, de Boer HH. Survival analysis of human meniscal transplantation. J Bone Joint Surg 2002; 84B: 227–31

    Article  Google Scholar 

  53. Van Arkel ERA, de Boer HH. Human meniscal transplantation: preliminary results at 2–5 years. J Bone Joint Surg 1995; 77B: 589–95

    Google Scholar 

  54. Garrett JC. Meniscal transplantation: a review of 43 cases with 2–7 year follow-up. Sports Med Arthrosc Rev 1998; 1: 164–7

    Article  Google Scholar 

  55. Potter HG, Rodeo SA, Wickeiwicz TL, Warren RF. MR imaging of meniscal allografts- correlation with clinical and ar- throscopic outcomes. Radiology 1996; 198: 509–514

    PubMed  CAS  Google Scholar 

  56. Aagaard H, Jorgensen U, Boisen-Moller F. Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc 1999; 7: 184–91

    Article  PubMed  CAS  Google Scholar 

  57. Rodkey WG, Steadman JR, Li ST. A clinical study of collagen meniscus implant to restore the injured meniscus. Clin Orthop 1999; 367: 281–92

    Article  Google Scholar 

  58. Stone KR, Steadman JR, Rodkey WG. Regeneration of meniscal cartilage with use of a collagen scaffold: analysis of preliminary data. J Bone Joint Surg 1997; 79A: 1770–7

    Google Scholar 

  59. Kobiyashi M, Toguchida J, Oka M. Preliminary study of polyvinyly alcohol: hydrogel (PVA-H) artificial meniscus. Biomaterials 2003; 24: 639–47

    Article  Google Scholar 

  60. Escalas F, Curell R. Occult post-traumatic bone injury. Knee Surg Sports Traumatol Arthrosc 1994; 2: 147–9

    Article  PubMed  CAS  Google Scholar 

  61. Even-Sapir E, Arbel R, Lerman H, et al. Bone injury associated with anterior cruciate ligament and meniscal tears: assessment with bone single photon emission computerized tomography. Invest Radiol 2002; 37: 521–7

    Article  PubMed  Google Scholar 

  62. Lahm A, Erggelet C, Steinwachs M, et al. Articular and osseous lesions in recent ligament tears; arthroscopic changes compared with magnetic resonance imaging findings. Arthroscopy 1998; 14: 597–604

    Article  PubMed  CAS  Google Scholar 

  63. Aichroth PM, Patel DV, Zorilla P. The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents. J Bone Joint Surg 2002; 84B: 38–41

    Article  Google Scholar 

  64. Barrack RL, Bruckner JD, Kniesl J, et al. The outcome of nonoperatively treated complete tears of the anterior cruciate ligament in active young adults. Clin Orthop 1990; 259: 192–9

    PubMed  Google Scholar 

  65. Ciccotti MG, Lombardo SJ, Nonweiler B, et al. Non-operative treatment of ruptures of the anterior cruciate ligament in middle-aged patients: results after long term follow-up. J Bone Joint Surg 1994; 76A: 1315–21

    Google Scholar 

  66. Gillquist J, Messner K. Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis. Sports Med 1999; 27: 143–56

    Article  PubMed  CAS  Google Scholar 

  67. Kullmer K, Letsch R, Turowski B. Which factors influence the progression of degenerative osteoarthritis after ACL surgery? Knee Surg Traumatol Arthrosc 1994; 2: 80–4

    Article  CAS  Google Scholar 

  68. McDaniel WJ, Dameron TB. The untreated anterior cruciate ligament rupture. Clin Orthop 1983; 172: 158–63

    PubMed  Google Scholar 

  69. Maletius W, Messner K. Eighteen to twenty year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med 1999; 27: 711–7

    PubMed  CAS  Google Scholar 

  70. Patee GA, Fox JM, Del Pizzo W, et al. Four to ten year follow-up of unreconstructed anterior cruciate ligament tears. Am J Sports Med 1989; 17: 430–5

    Article  Google Scholar 

  71. Pinczewski LA, Deehan DJ, Salmon LJ, et al. A five-year comparison of patellar tendon versus hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 2002; 30(4): 523–36

    PubMed  Google Scholar 

  72. Speer KP, Spritzer CE, Bassett III FH, et al. Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 1992; 20: 382–9

    Article  PubMed  CAS  Google Scholar 

  73. Faber KJ, Dill JR, Armendola A, et al. Occult osteochondral lesions after ACL rupture: six-year MRI follow-up study. Am J Sports Med 1999; 27: 489–94

    PubMed  CAS  Google Scholar 

  74. Buckwalter JA, Mankin HJ. Articular cartilage I: tissue design and chondrocyte matrix interactions. J Bone Joint Surg 1997; 79A: 600–11

    Google Scholar 

  75. Buckwalter JA, Mankin HJ. Articular cartilage II: degeneration and osteoarthrosis, repair, regeneration and transplantation. J Bone Joint Surg 1997; 79A: 612–32

    Google Scholar 

  76. Mandelbaum BR, Browne ES, Fu FH, et al. Articular surface lesions of the knee. Am J Sports Med 1998; 26: 853–61

    PubMed  CAS  Google Scholar 

  77. Mandelbaum BR. Articular cartilage repair: outcome and results. AOSSM Annual Meeting; 2000 Jun 18–21; Sun Valley (ID)

  78. Simonian P, Sussmann PS, Wickiewicz TL, et al. Contact pressure at osteochondral donor sites in the knee. Am J Sports Med 1998; 26: 491–4

    PubMed  CAS  Google Scholar 

  79. Aldalberth T, Roos H, Lauren M, et al. Magnetic resonance imaging, scintigraphy, and arthroscopic evaluation of traumatic haemarthrosis of the knee. Am J Sports Med 1997; 25: 231–17

    Article  Google Scholar 

  80. Johnson DL, Bealle DP, Brand Jr JC, et al. The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med 2000; 28: 152–5

    PubMed  CAS  Google Scholar 

  81. Rosen MA, Jackson DW, Berger PE. Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament rupture. Arthroscopy 1991; 7: 45–51

    Article  PubMed  CAS  Google Scholar 

  82. Warren RF, Kaplan N, Bach Jr BR. The lateral notch sign of anterior cruciate ligament insufficiency. Am J Knee Surg 1988; 1: 124

    Google Scholar 

  83. Fang C, Johnson D, Leslie MP, et al. Tissue distribution of cartilage oligomeric protein in patients with magnetic resonance imaging-detected bone bruise after anterior cruciate ligament tears. J Orthop Res 2001; 1(19): 631–41

    Google Scholar 

  84. Donohue JM, Boss D, Oegma Jr TR, et al. The effects of indirect blunt trauma on adult canine articular cartilage. J Bone Joint Surg 1983; 65A: 948–57

    Google Scholar 

  85. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg 1982; 64A: 460–6

    Google Scholar 

  86. Dye SF, Wojtys EM, Arbor A, et al. Factors contributing to function of the knee joint after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1998; 80A: 1380–93

    Google Scholar 

  87. Setton LA, Mow VC, Howell DS. Mechanical behaviour of articular cartilage in shear is altered by transection of the anterior cruciate ligament. J Bone Joint Surg 1995; 13A: 473–82

    Google Scholar 

  88. Hasler EM, Herzog W, Leonard TR, et al. In vitro knee joint loading and kinematics before and after ACL transection in an animal model. J Biomech 1998; 31: 253–62

    Article  PubMed  CAS  Google Scholar 

  89. Allen CR, Livesay GA, Wong EK, et al. Injury and reconstruction of the anterior cruciate ligament and osteoarthritis. Osteo- arthritis Cartilage 1999; 7: 110–21

    Article  CAS  Google Scholar 

  90. Yagi M, Wong EK, Kanamori A, et al. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2002; 30(5): 660–6

    PubMed  Google Scholar 

  91. Daniel DM, Stone ML, Bobson BE, et al. Fate of the ACL-injured patient: a prospective outcome study. Am J Sports Med 1994; 22: 632–44

    Article  PubMed  CAS  Google Scholar 

  92. Jomha NM, Borton DC, Clingeleffer AJ, et al. Long term osteoarthritic changes in anterior cruciate ligament reconstructed knees. Clin Orthop 1999; 358: 188–93

    PubMed  Google Scholar 

  93. Maletius W, Messner K. The effect of partial meniscectomy on the long-term prognosis of knees with localized, severe chon- dral damage: a twelve to fifteen year follow-up. Am J Sports Med 1996; 24: 258–62

    Article  PubMed  CAS  Google Scholar 

  94. Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscal tears extending into the avascular zone with or without ACL reconstructions in patients 40 years of age or older. Arthrosco- py 2000; 16: 822–9

    Article  CAS  Google Scholar 

  95. Price JS, Till SH, Bickerstaff DR, et al. Degradation of cartilage type II collagen precedes the onset of osteoarthritis following anterior cruciate ligament ruptures. Arthritis Rheum 1999; 42: 2390–8

    Article  PubMed  CAS  Google Scholar 

  96. Smith M, Ghosh P. Experimental models of osteoarthritis. In: Moskowitz RW, Howell DS, Attman RD, et al., editors. Osteoarthritis: diagnosis and medical/surgical management. Philadelphia (PA): WB Saunders, 2001: 171–99

    Google Scholar 

  97. Lohmander LS, Ionescu M, Jugessur H, et al. Changes in cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 1999; 42: 534–44

    Article  PubMed  CAS  Google Scholar 

  98. Cameron ML, Fu FH, Paessler HH. Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL- deficient knee. Knee Surg Sports Traumatol Arthrosc 1994; 2: 38–44

    Article  PubMed  CAS  Google Scholar 

  99. Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 1997; 40: 1012–9

    Article  PubMed  CAS  Google Scholar 

  100. Murrrell GAC, Dolan M, Jang D, et al. Nitric oxide: an important articular free radical. J Bone Joint Surg 1996; 78A: 265–74

    Google Scholar 

  101. Hashimoto S, Takahashi K, Ochs RL. Nitric oxide production and apoptosis in cells of the meniscus during experimental osteoarthritis. Arthritis Rheum 1999; 42: 2123–31

    Article  PubMed  CAS  Google Scholar 

  102. Maiotti M, Monteleone G, Tarantino U, et al. Correlation between osteoarthritic cartilage damage and levels of protein- ases and proteinase inhibitors in synovial fluid from the knee joint. Arthroscopy 2000; 16: 522–6

    Article  PubMed  CAS  Google Scholar 

  103. Le Graverand MP, Eggerer J, Vignon E, et al. Assessment of specific mRNA levels in cartilage regions in lapine model of osteoarthritis. J Orthop Res 2002; 20: 535–44

    Article  PubMed  Google Scholar 

  104. Bert J, Maschka K. The Arthroscopic treatment of unicompartmental gonarthtrosis: a five year follow-up study with abrasion arthroplasty plus arthroscopic debridement and arthroscopic debridement alone. Arthroplasty 1989; 5: 25–32

    CAS  Google Scholar 

  105. Brittberg M, Lindahl A, Nilsson A. Treatment of deep cartilage defects in the knee with autologous chondrocyte implantation. N Engl J Med 1994; 331: 889–95

    Article  PubMed  CAS  Google Scholar 

  106. Peterson L, Brittberg M, Kiviranta I, et al. Autologous chondrocyte transplantation: biomechanics and long-term durability. Am J Sports Med 2002; 30: 2–12

    PubMed  Google Scholar 

  107. O’Driscoll S. The healing and regeneration of articular cartilage. J Bone Joint Surg 1998; 80A: 1795–807

    Google Scholar 

  108. O’Driscoll SW, Keeley FW, Salter RB, et al. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts and major full-thickness defects in joint surfaces under the influence of continuous passive motion: a follow-up report at one year. J Bone Joint Surg 1988; 70A: 595–606

    Google Scholar 

  109. Merchan E, Galindo E. Arthroscope-guided surgery versus nonoperative treatment for limited degenerative arthritis of the femorotibial joint in patients over 50 years of age: a prospective comparative study. Arthroscopy 1993; 9: 663–7

    Article  PubMed  CAS  Google Scholar 

  110. Hubbard M. Articular debridement versus washout for degeneration of the medial femoral condyle. J Bone Joint Surg 1996; 78B: 217–2119

    Google Scholar 

  111. Steadman JR, Rodkey WG, Singleton SB. Microfracture technique for full-thickness chondral defects: technique and clinical results. Operative Tech Orthop 1997; 7: 300–4

    Article  Google Scholar 

  112. Bobic V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc 1996; 3: 262–4

    Article  PubMed  CAS  Google Scholar 

  113. Hangody L, Kish G, Karpati Z, et al. Arthroscopic autogenous mosaicplasty for the treatment of femoral condylar articular defects in the knee. Surg Traumatol Arthrosc 1997; 5: 262–7

    Article  CAS  Google Scholar 

  114. Morgan CD. Osteochondral autograft transfer. AOSSM Annual Meeting; 2000 Jun 18–21; Sun Valley (ID)

  115. Gambardella R. Osteochondral grafting: a multi-center review of clinical results: unpublished data presented at 2nd ICRS meeting; 1998 Nov 19–22; Boston

  116. Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop 2001; (391 Suppl.): S349–361

    Google Scholar 

  117. Appleyard RC, Swain MV, Murrell GAC, et al. The accuracy and reliability of a novel handheld dynamic indentation probe for analyzing articular cartilage. Trans Orthop Res Soc 2001; 26: 436

    Google Scholar 

  118. Lyyra T, Jurvelin J, Pitkanen P, et al. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 1995; 17: 395–9

    Article  PubMed  CAS  Google Scholar 

  119. Neyret P, Donell ST, Dejour H. Results of partial meniscectomy related to the state of the anterior cruciate ligament: review at 20–35 years. J Bone Joint Surg 1993; 75B: 36–40

    Google Scholar 

  120. Jarvela T, Kannus P, Jarvinen M. Anterior cruciate ligament reconstruction in patients with or without accompanying injuries: a re-examination of subjects 5–9 years after reconstruction. Arthroscopy 2001; 17: 818–25

    PubMed  CAS  Google Scholar 

  121. Jomha NM, Pinczewski LA, Cligeleffer A, et al. Arthroscopic reconstruction of the anterior cruciate ligament with patella tendon autograft and interference screw fixation: the results at seven years. J Bone Joint Surg 1999; 81B: 775–9

    Article  Google Scholar 

  122. Shelbourne KD, Tinker Gray MA. Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery. Am J Sports Med 2000; 28: 446–52

    PubMed  CAS  Google Scholar 

  123. Sommerlath K, Lysholm J, Gillquist J. The long-term course after treatment of acute anterior cruciate ligament ruptures: a 9 to 16 year follow-up. Am J Sports Med 1991; 19: 156–62

    Article  PubMed  CAS  Google Scholar 

  124. Noyes FR, Barber-Westin SD. Anterior cruciate ligament reconstruction with autogenous patellar tendon graft in patients with articular damage. Am J Sports Med 1997; 25: 626–34

    Article  PubMed  CAS  Google Scholar 

  125. Noyes FR, Barber-Westin SD. A comparison of results in acute and chronic anterior cruciate ligament ruptures of arthroscopi- cally assisted autogenous patella tendon reconstruction. Am J Sports Med 1997; 25: 626–34

    Article  PubMed  CAS  Google Scholar 

  126. O’Neill DB. Arthroscopically assisted reconstruction of the anterior cruciate ligament: a follow up report. J Bone Joint Surg 2001; 83A: 1329–32

    Google Scholar 

  127. Ferretti A, Conteduca F, De Carli A, et al. Osteoarthritis of the knee after ACL reconstruction. Int Orthop 1991; 15: 367–71

    Article  PubMed  CAS  Google Scholar 

  128. Beynnon BD, Fleming BC, Labovitch R, et al. Chronic anterior cruciate deficiency is associated with increased anterior translation of tibia during transition from non weight bearing to weight bearing. J Orthop Res 2002; 20: 332–7

    Article  PubMed  Google Scholar 

  129. Pinczewski LA, Russel V, Salmon L. Osteoarthritis after ACL reconstruction: a comparison of PT and HT graft for ACL reconstruction at over 7 years. AOSSM Specialty Day; 2003 Feb; New Orleans

  130. Labs K, Perka C, Schneider F. The biological and biomechanical effects of different graft tensioning in ACL reconstruction: an experimental study. Arch Orthop Trauma Surg 2002; 122: 193–9

    Article  PubMed  Google Scholar 

  131. Hoher J, Kanamori A, Zeminski J. The position of the tibia during graft fixation affects knee kinematics and graft forces for anterior cruciate ligament reconstruction 2001; 29: 771–776

    CAS  Google Scholar 

  132. Fleming BC, Abate JA, Peura GD, et al. The relationship between graft tensioning and the anterior-posterior laxity in the anterior cruciate ligament reconstructed goat knee. J Orthop Res 2001; 19: 841–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh P. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, H.P., Appleyard, R.C., Mahajan, S. et al. Meniscal and Chondral Loss in the Anterior Cruciate Ligament Injured Knee. Sports Med 33, 1075–1089 (2003). https://doi.org/10.2165/00007256-200333140-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333140-00004

Keywords

Navigation