Transient changes in the pattern of food intake following a simulated time-zone transition to the east across eight time zones

Chronobiol Int. 2005;22(2):299-319. doi: 10.1081/cbi-200053563.

Abstract

Twelve healthy adults were studied, singly or in groups of up to four, in an Isolation Unit before (control days) and for 3 days after a simulated time-zone transition to the east across 8 time zones (the clock being changed from 15:00 to 23:00h). Subjects were free to choose how to pass their waking hours (though naps were forbidden), and to eat what and when they wanted. A wide selection of food was provided, though the subjects had to prepare it. Subjects completed food intake questionnaire on waking and at 3h intervals during the waking day. This questionnaire assessed the reasons for choosing not to eat a meal or, if a meal was eaten, the reasons for doing so, the type of meal chosen and the reasons for this choice, and subjective responses to the meal (hunger before, enjoyment during, and satiety afterwards). Subjects also recorded the incidence and degree of indigestion and jet lag at 3 h intervals after the time-zone transition. Following the time-zone transition, the subjects experienced significant amounts of jet lag and recorded a significant increase in the incidence of indigestion. They also showed significant changes in their pattern of food intake, but, whereas the patterns of food intake were no longer significantly different from control days by the third post-shift day, the symptoms of jet lag and indigestion were still present then. The distribution of daytime meals was significantly affected on the first post-shift day, with a redistribution of the times that the main, hot meals were eaten; these times indicated some influence of an unadjusted body clock. On this day also, the reasons for determining food intake continued to be dominated by hunger and appetite (hunger even increasing in the frequency with which it was cited), and the reason for not eating a meal, by a lack of hunger. On both control and post-shift days, there was a marked effect of meal type upon the responses to food intake, with cold food being rated least and large hot meals most when appetite before the meal, enjoyment during it, and satiety afterward were considered. However, evidence suggested that the degree to which larger hot meals were preferred to cold meals was significantly less marked after the time-zone transition. On control days, sleep was unbroken; whereas, after the time-zone transition, all subjects woke on at least one of the 3 nights studied. During the first post-shift night, about half of the subjects ate a meal, the reason given being that they were "hungry." On those occasions when subjects woke but did not eat a meal, the reason cited was because they "could not be bothered" as frequently as because they were "not hungry.". A simulated time-zone transition is associated with significant changes to the incidence of indigestion, pattern of food intake, and subjective responses to food. However, these changes are generally transient and are only weakly linked to the sensation of jet lag.

MeSH terms

  • Adult
  • Appetite
  • Biological Clocks
  • Chronobiology Phenomena
  • Circadian Rhythm
  • Eating
  • Feeding Behavior
  • Female
  • Humans
  • Hunger
  • Jet Lag Syndrome*
  • Male
  • Satiation
  • Satiety Response
  • Surveys and Questionnaires
  • Time
  • Time Factors
  • Travel