Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods

Med Eng Phys. 2008 Dec;30(10):1257-69. doi: 10.1016/j.medengphy.2008.06.009. Epub 2008 Aug 3.

Abstract

This paper reviews various bioimpedance methods permitting to measure non-invasively, extracellular, intracellular and total body water (TBW) and compares BIA methods based on empirical equations of the wrist-ankle resistance or impedance at 50 kHz, height and weight with BIS methods which rely on an electrical model of tissues and resistances measured at zero and infinite frequencies. In order to compare these methods, impedance measurements were made with a multifrequency Xitron 4200 impedance meter on 57 healthy subjects which had undergone simultaneously a Dual X-ray absorptiometry examination (DXA), in order to estimate their TBW from their fat-free-mass. Extracellular (ECW) and TBW volumes were calculated for these subjects using the original BIS method and modifications of Matthie[Matthie JR. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 2005;99:780-1], Jaffrin et al. [Jaffrin MY, Fenech M, Moreno MV, Kieffer R. Total body water measurement by a modification of the bioimpédance spectroscopy method. Med Bio Eng Comput 2006;44:873-82], Moissl et al. [Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006;27:921-33] and their TBW resistivities were compared and discussed. ECW volumes were calculated by BIA methods of Sergi et al. [Sergi G, Bussolotto M, Perini P, Calliari I, et al. Accuracy of bioelectrical bioimpedance analysis for the assessment of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 1994;38(3):158-65] and Hannan et al. [Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci 1994;86:479-85] and TBW volumes by BIA methods of Kushner and Schoeller [Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 1986;44(3):417-24], Lukaski et al. [Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med 1988;59:1163-9], Hannan et al. [Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clinical Science 1994;86:479-85], Deurenberg et al. [Deurenberg P, van der Koy K, Leenen R, Westrate JA, Seidell JC. Sex and age specific prediction formulas for estimating body composition from bioelectric impedance: a cross validation study. Int J Obesity 1991;15:17-25] These volumes were compared against those given by BIS method and, in the case of TBW, with those by DXA. For ECW, a good agreement was found between various BIS methods and that of Sergi while Hannan's values were higher. Both Matthie's and Moissl's methods gave mean TBW resistivities and volumes lower than those of Jaffrin's and DXA methods. Kushner et al. method gave values of TBW not significantly different from those of Jaffrin et al. and DXA, as Hannan's method in men, but Lukaski and Deurenberg methods led to an underestimation.

Publication types

  • Review

MeSH terms

  • Body Fluids*
  • Computer Simulation
  • Diagnosis, Computer-Assisted / methods*
  • Electric Impedance
  • Models, Biological*
  • Plethysmography, Impedance / methods*
  • Water / analysis*
  • Water-Electrolyte Imbalance / diagnosis*
  • Water-Electrolyte Imbalance / physiopathology*

Substances

  • Water