Quantifying movement demands of AFL football using GPS tracking

J Sci Med Sport. 2010 Sep;13(5):531-6. doi: 10.1016/j.jsams.2009.09.002. Epub 2009 Nov 7.

Abstract

Global positioning system (GPS) monitoring of movement patterns is widespread in elite football including the Australian Football League (AFL). However documented analysis of this activity is lacking. We quantified the movement patterns of AFL football and differences between nomadic (midfield), forward and defender playing positions, and determined whether the physical demands have increased over a four season period. Selected premiership games were monitored during the 2005 (n=80 game files), 2006 (n=244), 2007 (n=632) and 2008 (n=793) AFL seasons. Players were fitted with a shoulder harness containing a GPS unit. GPS data were downloaded after games and the following measures extracted: total distance (km), time in various speed zones, maximum speed, number of surges, accelerations, longest continuous efforts and a derived exertion index representing playing intensity. In 2008 nomadic players covered per game 3.4% more total distance (km), had 4.8% less playing time (min), a 17% higher exertion index (per min), and 23% more time running >18kmh(-1) than forwards and defenders (all p<0.05). Physical demands were substantially higher in the 2008 season compared with 2005: an 8.4% increase in mean speed, a 14% increase in intensity (exertion index) and a 9.0% decrease in playing time (all p<0.05). Nomadic players in AFL work substantially harder than forwards and defenders in covering more ground and at higher running intensities. Increases in the physical demands of AFL football were evident between 2005 and 2008. The increasing speed of the game has implications for game authorities, players and coaching staff.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Athletic Performance / trends*
  • Geographic Information Systems*
  • Humans
  • Male
  • Physical Fitness
  • Running / trends
  • Soccer*
  • Task Performance and Analysis