Metabolic cost of running barefoot versus shod: is lighter better?

Med Sci Sports Exerc. 2012 Aug;44(8):1519-25. doi: 10.1249/MSS.0b013e3182514a88.

Abstract

Purpose: Based on mass alone, one might intuit that running barefoot would exact a lower metabolic cost than running in shoes. Numerous studies have shown that adding mass to shoes increases submaximal oxygen uptake (V˙O(2)) by approximately 1% per 100 g per shoe. However, only two of the seven studies on the topic have found a statistically significant difference in V˙O(2) between barefoot and shod running. The lack of difference found in these studies suggests that factors other than shoe mass (e.g., barefoot running experience, foot strike pattern, shoe construction) may play important roles in determining the metabolic cost of barefoot versus shod running. Our goal was to quantify the metabolic effects of adding mass to the feet and compare oxygen uptake and metabolic power during barefoot versus shod running while controlling for barefoot running experience, foot strike pattern, and footwear.

Methods: Twelve males with substantial barefoot running experience ran at 3.35 m·s with a midfoot strike pattern on a motorized treadmill, both barefoot and in lightweight cushioned shoes (∼150 g per shoe). In additional trials, we attached small lead strips to each foot/shoe (∼150, ∼300, and ∼450 g). For each condition, we measured the subjects' rates of oxygen consumption and carbon dioxide production and calculated metabolic power.

Results: V˙O(2) increased by approximately 1% for each 100 g added per foot, whether barefoot or shod (P < 0.001). However, barefoot and shod running did not significantly differ in V˙O(2) or metabolic power. A consequence of these two findings was that for footwear conditions of equal mass, shod running had ∼3%-4% lower V˙O(2) and metabolic power demand than barefoot running (P < 0.05).

Conclusions: Running barefoot offers no metabolic advantage over running in lightweight, cushioned shoes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Exercise / physiology*
  • Exercise Test
  • Foot
  • Humans
  • Male
  • Oxygen Consumption / physiology*
  • Running / physiology*
  • Shoes*